Hadoop之使用python实现数据集合间join操作
hadoop之steaming介绍 hadoop有个工具叫做steaming,能够支持python、shell、C++、PHP等其他任何支持标准输入stdin及标准输出stdout的语言,其运行原理可以通过和标准java的map-reduce程序对比来说明: 使用原生java语言实现Map-reduce程序 hadoop准备好数据
hadoop之steaming介绍
hadoop有个工具叫做steaming,能够支持python、shell、C++、PHP等其他任何支持标准输入stdin及标准输出stdout的语言,其运行原理可以通过和标准java的map-reduce程序对比来说明:
使用原生java语言实现Map-reduce程序
- hadoop准备好数据后,将数据传送给java的map程序
- java的map程序将数据处理后,输出O1
- hadoop将O1打散、排序,然后传给不同的reduce机器
- 每个reduce机器将传来的数据传给reduce程序
- reduce程序将数据处理,输出最终数据O2
借助hadoop streaming使用python语言实现Map-reduce程序
- hadoop准备好数据后,将数据传送给java的map程序
- java的map程序将数据处理成“键/值”对,并传送给python的map程序
- python的map程序将数据处理后,将结果传回给java的map程序
- java的map程序将数据输出为O1
- hadoop将O1打散、排序,然后传给不同的reduce机器
- 每个reduce机器将传来的数据处理成“键/值”对,并传送给python的reduce程序
- python的reduce程序将数据处理后,将结果返回给java的reduce程序
- java的reduce程序将数据处理,输出最终数据O2
上面红色表示map的对比,蓝色表示reduce的对比,可以看出streaming程序多了一步中间处理,这样说来steaming程序的效率和性能应该低于java版的程序,然而python的开发效率、运行性能有时候会大于java,这就是streaming的优势所在。
hadoop之实现集合join的需求
hadoop是用来做数据分析的,大都是对集合进行操作,因此该过程中将集合join起来使得一个集合能得到另一个集合对应的信息的需求非常常见。
比如以下这个需求,有两份数据:学生信息(学号,姓名)和学生成绩(学号、课程、成绩),特点是有个共同的主键“学号”,现在需要将两者结合起来得到数据(学号,姓名,课程,成绩),计算公式:
(学号,姓名) join (学号,课程,成绩)= (学号,姓名,课程,成绩)
数据事例1-学生信息:
学号sno | 姓名name |
01 | name1 |
02 | name2 |
03 | name3 |
04 | name4 |
数据事例2:-学生成绩:
学号sno | 课程号courseno | 成绩grade |
01 | 01 | 80 |
01 | 02 | 90 |
02 | 01 | 82 |
02 | 02 | 95 |
期待的最终输出:
学号sno | 姓名name | 课程courseno | 成绩grade |
01 | name1 | 01 | 80 |
01 | name1 | 02 | 90 |
02 | name2 | 01 | 82 |
02 | name2 | 02 | 95 |
实现join的注意点和易踩坑总结
如果你想写一个完善健壮的map reduce程序,我建议你首先弄清楚输入数据的格式、输出数据的格式,然后自己手动构建输入数据并手动计算出输出数据,这个过程中你会发现一些写程序中需要特别处理的地方:
- 实现join的key是哪个,是1个字段还是2个字段,本例中key是sno,1个字段
- 每个集合中key是否可以重复,本例中数据1不可重复,数据2的key可以重复
- 每个集合中key的对应值是否可以不存在,本例中有学生会没成绩,所以数据2的key可以为空
第1条会影响到hadoop启动脚本中key.fields和partition的配置,第2条会影响到map-reduce程序中具体的代码实现方式,第3条同样影响代码编写方式。
hadoop实现join操作的思路
具体思路是给每个数据源加上一个数字标记label,这样hadoop对其排序后同一个字段的数据排在一起并且按照label排好序了,于是直接将相邻相同key的数据合并在一起输出就得到了结果。
1、 map阶段:给表1和表2加标记,其实就是多输出一个字段,比如表一加标记为0,表2加标记为2;
2、 partion阶段:根据学号key为第一主键,标记label为第二主键进行排序和分区
3、 reduce阶段:由于已经按照第一主键、第二主键排好了序,将相邻相同key数据合并输出
hadoop使用python实现join的map和reduce代码
mapper.py的代码:
# -*- coding: utf-8 -*- #Mapper.py #来自疯狂的蚂蚁www.crazyant.net import os import sys #mapper脚本 def mapper(): #获取当前正在处理的文件的名字,这里我们有两个输入文件 #所以要加以区分 filepath = os.environ["map_input_file"] filename = os.path.split(filepath)[-1] for line in sys.stdin: if line.strip()=="": continue fields = line[:-1].split("\t") sno = fields[0] #以下判断filename的目的是不同的文件有不同的字段,并且需加上不同的标记 if filename == 'data_info': name = fields[1] #下面的数字'0'就是为数据源1加上的统一标记 print '\t'.join((sno,'0',name)) elif filename == 'data_grade': courseno = fields[1] grade = fields[2] #下面的数字'1'就是为数据源1加上的统一标记 print '\t'.join((sno,'1',courseno,grade)) if __name__=='__main__': mapper()
reducer的代码:
# -*- coding: utf-8 -*- #reducer.py #来自疯狂的蚂蚁www.crazyant.net import sys def reducer(): #为了记录和上一个记录的区别,用lastsno记录上个sno lastsno = "" for line in sys.stdin: if line.strip()=="": continue fields = line[:-1].split("\t") sno = fields[0] ''' 处理思路: 遇见当前key与上一条key不同并且label=0,就记录下来name值, 当前key与上一条key相同并且label==1,则将本条数据的courseno、 grade联通上一条记录的name一起输出成最终结果 ''' if sno != lastsno: name="" #这里没有判断label==1的情况, #因为sno!=lastno,并且label=1表示该条key没有数据源1的数据 if fields[1]=="0": name=fields[2] elif sno==lastno: #这里没有判断label==0的情况, #因为sno==lastno并且label==0表示该条key没有数据源2的数据 if fields[2]=="1": courseno=fields[2] grade=fields[3] if name: print '\t'.join((lastsno,name,courseno,grade)) lastsno = sno if __name__=='__main__': reducer()
使用shell脚本启动hadoop程序的方法:
#先删除输出目录 ~/hadoop-client/hadoop/bin/hadoop fs -rmr /hdfs/jointest/output #来自疯狂的蚂蚁www.crazyant.net #注意,下面配置中的环境值每个人机器不一样 ~/hadoop-client/hadoop/bin/hadoop streaming \ -D mapred.map.tasks=10 \ -D mapred.reduce.tasks=5 \ -D mapred.job.map.capacity=10 \ -D mapred.job.reduce.capacity=5 \ -D mapred.job.name="join--sno_name-sno_courseno_grade" \ -D num.key.fields.for.partition=1 \ -D stream.num.map.output.key.fields=2 \ -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \ -input "/hdfs/jointest/input/*" \ -output "/hdfs/jointest/output" \ -mapper "python26/bin/python26.sh mapper.py" \ -reducer "python26/bin/python26.sh reducer.py" \ -file "mapper.py" \ -file "reducer.py" \ -cacheArchive "/share/python26.tar.gz#python26" #看看运行成功没,若输出0则表示成功了 echo $?
可以自己手工构造输入输出数据进行测试,本程序是验证过的。
更多需要注意的地方
hadoop的join操作可以分为很多类型,各种类型脚本的编写有所不同,其分类是按照key字段数目、value字段数目、key是否可重复来划分的,以下是一个个人总结的对照表,表示会影响的地方:
影响类型 | 影响的范围 |
key字段数目 | 1、启动脚本中num.key.fields.for.partition的配置2、启动脚本中stream.num.map.output.key.fields的配置 |
3、map和reduce脚本中key的获取
4、map和reduce脚本中每一条数据和上一条数据比较的方法key是否可重复如果数据源1可重复,标记为M;数据源2可重复标记为N,那么join可以分为:1*1、M*1、M*N类型
1*1类型:reduce中先记录第一个value,然后在下一条直接合并输出;
M*1类型:将类型1作为标记小的输出,然后每次遇见label=1就记录value,每遇见一次label=2就输出一次最终结果;
M*N类型:遇见类型1,就用数组记录value值,遇见label=2就将将记录的数组值全部连同该行value输出。value字段数目影响每次label=1时记录的数据个数,需要将value都记录下来
原文链接 转载须注明!
原文地址:Hadoop之使用python实现数据集合间join操作, 感谢原作者分享。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제









모바일 XML에서 PDF의 속도는 다음 요인에 따라 다릅니다. XML 구조의 복잡성. 모바일 하드웨어 구성 변환 방법 (라이브러리, 알고리즘) 코드 품질 최적화 방법 (효율적인 라이브러리 선택, 알고리즘 최적화, 캐시 데이터 및 다중 스레딩 사용). 전반적으로 절대적인 답변은 없으며 특정 상황에 따라 최적화해야합니다.

단일 애플리케이션으로 휴대 전화에서 직접 XML에서 PDF 변환을 완료하는 것은 불가능합니다. 두 단계를 통해 달성 할 수있는 클라우드 서비스를 사용해야합니다. 1. 클라우드에서 XML을 PDF로 변환하십시오. 2. 휴대 전화에서 변환 된 PDF 파일에 액세스하거나 다운로드하십시오.

C 언어에는 내장 합계 기능이 없으므로 직접 작성해야합니다. 합계는 배열 및 축적 요소를 가로 질러 달성 할 수 있습니다. 루프 버전 : 루프 및 배열 길이를 사용하여 계산됩니다. 포인터 버전 : 포인터를 사용하여 배열 요소를 가리키며 효율적인 합계는 자체 증가 포인터를 통해 달성됩니다. 동적으로 배열 버전을 할당 : 배열을 동적으로 할당하고 메모리를 직접 관리하여 메모리 누출을 방지하기 위해 할당 된 메모리가 해제되도록합니다.

XML 구조가 유연하고 다양하기 때문에 모든 XML 파일을 PDF로 변환 할 수있는 앱은 없습니다. XML에서 PDF의 핵심은 데이터 구조를 페이지 레이아웃으로 변환하는 것입니다. XML을 구문 분석하고 PDF를 생성해야합니다. 일반적인 방법으로는 요소 트리와 같은 파이썬 라이브러리를 사용한 XML 및 ReportLab 라이브러리를 사용하여 PDF를 생성하는 XML을 구문 분석합니다. 복잡한 XML의 경우 XSLT 변환 구조를 사용해야 할 수도 있습니다. 성능을 최적화 할 때는 멀티 스레드 또는 멀티 프로세스 사용을 고려하고 적절한 라이브러리를 선택하십시오.

XML 서식 도구는 규칙에 따라 코드를 입력하여 가독성과 이해를 향상시킬 수 있습니다. 도구를 선택할 때는 사용자 정의 기능, 특수 상황 처리, 성능 및 사용 편의성에주의하십시오. 일반적으로 사용되는 도구 유형에는 온라인 도구, IDE 플러그인 및 명령 줄 도구가 포함됩니다.

XSLT 변환기 또는 이미지 라이브러리를 사용하여 XML을 이미지로 변환 할 수 있습니다. XSLT 변환기 : XSLT 프로세서 및 스타일 시트를 사용하여 XML을 이미지로 변환합니다. 이미지 라이브러리 : Pil 또는 Imagemagick와 같은 라이브러리를 사용하여 XML 데이터에서 이미지를 그리기 및 텍스트 그리기와 같은 이미지를 만듭니다.

휴대폰에서 고품질로 XML을 PDF로 변환하려면 클라우드에서 XML을 구문 분석하고 서버리스 컴퓨팅 플랫폼을 사용하여 PDF를 생성합니다. 효율적인 XML 파서 및 PDF 생성 라이브러리를 선택하십시오. 오류를 올바르게 처리합니다. 휴대 전화에서 무거운 작업을 피하기 위해 클라우드 컴퓨팅 파워를 최대한 활용하십시오. 복잡한 XML 구조 처리, 다중 페이지 PDF 생성 및 이미지 추가를 포함하여 요구 사항에 따라 복잡성을 조정하십시오. 로그 정보를 인쇄하여 디버그를 돕습니다. 성능을 최적화하고 효율적인 파서 및 PDF 라이브러리를 선택하고 비동기 프로그래밍 또는 XML 데이터를 사용할 수 있습니다. 우수한 코드 품질과 유지 관리를 보장하십시오.

XML을 PDF로 직접 변환하는 응용 프로그램은 근본적으로 다른 두 형식이므로 찾을 수 없습니다. XML은 데이터를 저장하는 데 사용되는 반면 PDF는 문서를 표시하는 데 사용됩니다. 변환을 완료하려면 Python 및 ReportLab과 같은 프로그래밍 언어 및 라이브러리를 사용하여 XML 데이터를 구문 분석하고 PDF 문서를 생성 할 수 있습니다.
