목차
Who are rdrkt?
What is Leafblower?
Where did the idea for Leafblower come from?
How does Leafblower work?
When will it be ready for a production environment?
Why did rdrkt use MongoDB?
Want more information?
데이터 베이스 MySQL 튜토리얼 Leafblower: Winner of the MongoDB March Madness Ha

Leafblower: Winner of the MongoDB March Madness Ha

Jun 07, 2016 pm 04:30 PM
mongodb the

In March, 10gen hosted a Global Hackathon called MongoDB March Madness, and challenged the community to build tools to support the growing MongoDB community. Leafblower, a project built at the Sydney March Madness Hackathon, was the global

In March, 10gen hosted a Global Hackathon called MongoDB March Madness, and challenged the community to build tools to support the growing MongoDB community. Leafblower, a project built at the Sydney March Madness Hackathon, was the global winner of the Hackathon

Who are rdrkt?

Andy Sharman and Josh Stevenson work together on independent projects under their brand rdrkt (pronounced “redirect”) and capitalize on their largely overlapping skillset, but unique passions to build cutting-edge web applications. Josh is passionate about flexible, scalable back-end systems and Andy is passionate about accessible, responsive user interfaces.

Josh, originally from the United States, now lives and works full-time in Sydney, Australia for Excite Digital Media. He has experience with the LAMP stack, CakePHP, ZendFramework, and MongoDB. He’s also worked on projects which have required his significant expertise with jQuery, HTML5 and CSS3. He’s very active in the Sydney area tech community, regularly attending PHP, MongoDB, WebDirections and WebBlast meetups.

Andy, from the UK, also now lives in Sydney and works for Visualjazz Isobar. He has frontend experience with HTML5, Vanilla JavaScript, jQuery, Mootools, and WebGL with Three.js. In addition to that, he has experience with backend languages such as PHP, C#.NET, Node.JS and CMS’ such as Sitecore, Magento, Joomla, and Wordpress.

What is Leafblower?

Leafblower is a real-time dashboard platform we conceived and programmed for the MongoDB March Madness Hackathon. Its primary focus is on bleeding-edge, up-to-the-second application analytics and monitoring to help campaign managers and system administrators to react quickly to ever-changing trending and traffic spiking. We live in an age where one link on Reddit or a viral post on Facebook can mean the difference between “getting your break” and catastrophic failure of the application’s server infrastructure. Leafblower helps users understand what is happening “right now” in their applications and most importantly their server availability and usage by cutting out as much aggregation as possible and focusing on capturing and reporting data samples as-they-happen.

Where did the idea for Leafblower come from?

At the start of the Sydney-based MongoDB hackathon, Andy wanted to build some sort of analytics or reporting toolset to help people learn the way Mongo databases function and grow, but it wasn’t until the starting bell rang that Josh had the idea of doing real-time monitoring rather than historical analysis. That’s how Leafblower was born.

We went on to win the Sydney hackathon, and decided to really buckle down and clean up what we worked on for the global competition, rather than trying to build out too many extra features.

Anyone can look at and download everything needed to install Leafblower on Github

How does Leafblower work?

After the initial idea for Leafblower was formed, the rest of the project flowed together organically. The platform uses MongoDB as the storage engine to run all the data “blocks” which display statistics intuitively for end-users. Blocks render themselves using information passed to them via a Node.js communication layer which itself connects to a backend API server. This allows many clients to be connected and viewing dashboards without requiring any additional load on the API server and thus the application itself.

Leafblower is currently running on a Linux/Apache/MongoDB/PHP/Node.JS system, however, Linux could be swapped out for any OS, and Apache could be swapped out for any web server assuming that the correct version of the required services are installed and configured to play nicely. There is a full list of required software available on our Github page. Leafblower uses well-supported cross-OS services it so you can run an instance with the operating system you’re used to.

Rather than trying to create a platform that is generic enough to be useful to all the different applications out there, our goal was to create enough useful Blocks and then put the power to customize or extend block functionality with the people actually using Leafblower to monitor their apps. NoSQL solutions like MongoDB are the perfect fit for projects looking to allow developers to extend our platform with minimal-to-zero prior knowledge of how data is stored and passed around, internally. For example, while some of the elements of the configuration documents in MongoDB are required to function properly, whole portions are completely arbitrary depending on the data needs of a given block. With MongoDB this is no sweat. For us, the advantage is not so much about “No Schema” as is it is about a “Flexible Schema”.

When will it be ready for a production environment?

After completing the early stages of the project and successfully winning the MongoDB Global March Madness Hackathon Josh and Andy have a number of features and services, both short and long-term, to implement. Some of the items on their shortlist are:

  • Users and Groups to which profiles can be assigned
  • Easier setup and installation/configuration for users who want to deploy Leafblower on their own hardware
  • A full suite of Blocks of both a basic and advanced nature, such as API Blocks for Twitter/Facebook/Google which do live social/analytics monitoring
  • Automatic historical data comparison to make it easier to compare current live data with past trends
  • Admin panel enhancements to make users, groups, profiles, and Blocks easier to configure

User logins and access groups are our first priority and we expect to include them in the next release of Leafblower on Github. We’re also hoping the community will engage with Leafblower and help us build out our library of standard Blocks.

Why did rdrkt use MongoDB?

Leafblower is a real time monitoring platform, not a complete self-contained application. In order for it to be flexible enough to monitor all sorts of potential data feeds and apis, we knew a flexible schema was the way to go. For example, let’s look at a document from the blocks collection

{
    "_id" : "geoCheckIns",
    "type" : "geospacial",
    "title" : "Visualize checkins as they occur.",
    "description" : "Block for visualizing the checkins occurring in your app bound by a circle centered at a given lat/lon and radius",
    "ttl" : 5000,
    "options" : {
        "lat" : -33.873651,
        "lon" : -151.2068896,
        "radius" : 50,
        "host" : "localhost",
        "db" : "demo",
        "collection" : "checkins"
    }
}
로그인 후 복사

In the case of a block, each one will always have the fields _id, type, title, description, ttl and options, however, options is a subdocument and may contain an arbitrary number of fields. In this example, we need to know which database host, database name, a collection name with checkin data to monitor, a center point to draw our great circle and the radius of the circle. From those data points, the block will be able to render a map centered over our point and drop pins onto the map as users check in to your application. This particular block would be useful for someone monitoring their social media campaign as it goes live in a specific city or region.

Let’s look at another block type for contrast:

{
    "_id" : "memory",
    "type" : "system",
    "title" : "Memory",
    "description" : "View statistics about the memory usage on your server.",
    "ttl" : 1000,
    "options" : {
    }
}
로그인 후 복사

In this example, we left options completely empty because we are retrieving the monitoring data from the server the user is currently connected to. Our application still expects an object to exist when we access options, so we maintain the structure of our document despite not needing to read any further data for this type of block. We might expect sysadmins to use a modified version of this block for monitoring servers they administer.

This is a good illustration of what we mean when we say “flexible schema”. It’s an important distinction to make from “no schema”, since there is a clear idea of how the data is structured, we’ve just allowed for flexibility in certain places where advantageous. NoSQL solutions like MongoDB are very attractive to many developers, because they can interact with the database as if they are simply storing and retrieving objects from a datastore. This is a dangerous path to follow, however, because a “set it and forget it” attitude will quickly lead to scaling and performance issues as an application grows. Know the structure of your data and only make changes to that structure incrementally.

MongoDB is easy to scale and has a vibrant user community. Leafblower gives back to the community by creating useful tools to showcase MongoDB’s advantages while teaching them how it works. It’s a win for everyone: for ourselves, for MongoDB, and for the IT Community at large.

Want more information?

Leafblower:

  • Github repo
  • Twitter
  • Angelist

rdrkt:

  • Facebook
  • Website
  • Twitter
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

mongodb에는 일반적으로 어떤 버전이 사용됩니까? mongodb에는 일반적으로 어떤 버전이 사용됩니까? Apr 07, 2024 pm 05:48 PM

최신 기능과 개선 사항을 제공하는 최신 버전의 MongoDB(현재 5.0) 사용을 권장합니다. 버전을 선택할 때 기능 요구 사항, 호환성, 안정성 및 커뮤니티 지원을 고려해야 합니다. 예를 들어 최신 버전에는 트랜잭션 및 집계 파이프라인 최적화와 같은 기능이 있습니다. 버전이 애플리케이션과 호환되는지 확인하세요. 프로덕션 환경의 경우 장기 지원 버전을 선택하세요. 최신 버전에는 더욱 활발한 커뮤니티 지원이 포함되어 있습니다.

nodejs와 vuejs의 차이점 nodejs와 vuejs의 차이점 Apr 21, 2024 am 04:17 AM

Node.js는 서버측 JavaScript 런타임인 반면, Vue.js는 대화형 사용자 인터페이스를 생성하기 위한 클라이언트측 JavaScript 프레임워크입니다. Node.js는 백엔드 서비스 API 개발, 데이터 처리 등 서버 측 개발에 사용되고, Vue.js는 단일 페이지 애플리케이션, 반응형 사용자 인터페이스 등 클라이언트 측 개발에 사용됩니다.

2개월 만에 휴머노이드 로봇 '워커S' 옷 개기 가능 2개월 만에 휴머노이드 로봇 '워커S' 옷 개기 가능 Apr 03, 2024 am 08:01 AM

기계력 보고서 편집자: 우신(Wu Xin) 국내판 휴머노이드 로봇+대형 모델팀이 옷 접기 등 복잡하고 유연한 재료의 작업 작업을 처음으로 완료했습니다. OpenAI 멀티모달 대형 모델을 접목한 Figure01이 공개되면서 국내 동종업체들의 관련 진전이 주목받고 있다. 바로 어제, 중국의 "1위 휴머노이드 로봇 주식"인 UBTECH는 Baidu Wenxin의 대형 모델과 긴밀하게 통합되어 몇 가지 흥미로운 새로운 기능을 보여주는 휴머노이드 로봇 WalkerS의 첫 번째 데모를 출시했습니다. 이제 Baidu Wenxin의 대형 모델 역량을 활용한 WalkerS의 모습은 이렇습니다. Figure01과 마찬가지로 WalkerS는 움직이지 않고 책상 뒤에 서서 일련의 작업을 완료합니다. 인간의 명령을 따르고 옷을 접을 수 있습니다.

mongodb가 생성한 데이터베이스는 어디에 있나요? mongodb가 생성한 데이터베이스는 어디에 있나요? Apr 07, 2024 pm 05:39 PM

MongoDB 데이터베이스의 데이터는 로컬 파일 시스템, 네트워크 파일 시스템 또는 클라우드 스토리지에 있는 지정된 데이터 디렉터리에 저장됩니다. 구체적인 위치는 다음과 같습니다. 로컬 파일 시스템: 기본 경로는 Linux/macOS입니다. /데이터/db, Windows: C:\data\db. 네트워크 파일 시스템: 경로는 파일 시스템에 따라 다릅니다. 클라우드 스토리지: 경로는 클라우드 스토리지 제공업체에 의해 결정됩니다.

mongodb 데이터베이스의 장점은 무엇입니까? mongodb 데이터베이스의 장점은 무엇입니까? Apr 07, 2024 pm 05:21 PM

MongoDB 데이터베이스는 유연성, 확장성 및 고성능으로 잘 알려져 있습니다. 그 장점은 다음과 같습니다: 데이터를 유연하고 구조화되지 않은 방식으로 저장할 수 있는 문서 데이터 모델입니다. 샤딩을 통해 여러 서버로 수평 확장이 가능합니다. 쿼리 유연성, 복잡한 쿼리 및 집계 작업을 지원합니다. 데이터 복제 및 내결함성은 데이터 중복성과 고가용성을 보장합니다. 프런트엔드 애플리케이션과의 손쉬운 통합을 위한 JSON 지원. 많은 양의 데이터를 처리하는 경우에도 빠른 응답을 위한 고성능입니다. 오픈 소스이며 사용자 정의가 가능하고 무료로 사용할 수 있습니다.

몽고디비는 무슨 뜻인가요? 몽고디비는 무슨 뜻인가요? Apr 07, 2024 pm 05:57 PM

MongoDB는 대량의 정형 및 비정형 데이터를 저장하고 관리하는 데 사용되는 문서 중심의 분산 데이터베이스 시스템입니다. 핵심 개념은 문서 저장 및 배포이며 주요 기능으로는 동적 스키마, 인덱싱, 집계, 맵 축소 및 복제가 있습니다. 콘텐츠 관리 시스템, 전자상거래 플랫폼, 소셜 미디어 웹사이트, IoT 애플리케이션, 모바일 애플리케이션 개발에 널리 사용됩니다.

mongodb 데이터베이스 파일은 어디에 있나요? mongodb 데이터베이스 파일은 어디에 있나요? Apr 07, 2024 pm 05:42 PM

MongoDB 데이터베이스 파일은 MongoDB 데이터 디렉터리에 위치하며 기본적으로 /data/db이며, 여기에는 .bson(문서 데이터), ns(수집 정보), Journal(쓰기 작업 기록), wiredTiger(WiredTiger 사용 시 데이터)가 포함됩니다. 스토리지 엔진) 및 config(데이터베이스 구성 정보) 및 기타 파일입니다.

몽고디비를 여는 방법 몽고디비를 여는 방법 Apr 07, 2024 pm 06:15 PM

Linux/macOS: 데이터 디렉터리를 생성하고 "mongod" 서비스를 시작합니다. Windows의 경우: 데이터 디렉터리를 만들고 Service Manager에서 MongoDB 서비스를 시작합니다. Docker에서: "docker run" 명령을 실행하십시오. 다른 플랫폼: MongoDB 설명서를 참조하세요. 확인 방법: "mongo" 명령을 실행하여 연결하고 서버 버전을 확인하세요.

See all articles