Impala与Hive的比较
1. Impala架构 Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Eng
1. Impala架构
Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。其架构如图 1所示,Impala主要由Impalad, State Store和CLI组成。
图 1
Impalad: 与DataNode运行在同一节点上,由Impalad进程表示,它接收客户端的查询请求(接收查询请求的Impalad为Coordinator,Coordinator通过JNI调用java前端解释SQL查询语句,生成查询计划树,再通过调度器把执行计划分发给具有相应数据的其它Impalad进行执行),读写数据,并行执行查询,并把结果通过网络流式的传送回给Coordinator,由Coordinator返回给客户端。同时Impalad也与State Store保持连接,用于确定哪个Impalad是健康和可以接受新的工作。在Impalad中启动三个ThriftServer: beeswax_server(连接客户端),hs2_server(借用Hive元数据), be_server(Impalad内部使用)和一个ImpalaServer服务。
Impala State Store: 跟踪集群中的Impalad的健康状态及位置信息,由statestored进程表示,它通过创建多个线程来处理Impalad的注册订阅和与各Impalad保持心跳连接,各Impalad都会缓存一份State Store中的信息,当State Store离线后(Impalad发现State Store处于离线时,会进入recovery模式,反复注册,当State Store重新加入集群后,自动恢复正常,更新缓存数据)因为Impalad有State Store的缓存仍然可以工作,但会因为有些Impalad失效了,而已缓存数据无法更新,导致把执行计划分配给了失效的Impalad,导致查询失败。
CLI: 提供给用户查询使用的命令行工具(Impala Shell使用python实现),同时Impala还提供了Hue,JDBC, ODBC使用接口。
2. 与Hive的关系
Impala与Hive都是构建在Hadoop之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看Impala与Hive有很多的共同之处,如数据表元数据、ODBC/JDBC驱动、SQL语法、灵活的文件格式、存储资源池等。Impala与Hive在Hadoop中的关系如图 2所示。Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据分析人员提供了快速实验、验证想法的大数据分析工具。可以先使用hive进行数据转换处理,之后使用Impala在Hive处理后的结果数据集上进行快速的数据分析。
图 2
3. Impala的查询处理过程
Impalad分为Java前端与C++处理后端,接受客户端连接的Impalad即作为这次查询的Coordinator,Coordinator通过JNI调用Java前端对用户的查询SQL进行分析生成执行计划树,不同的操作对应不用的PlanNode, 如:SelectNode, ScanNode, SortNode, AggregationNode, HashJoinNode等等。
执行计划树的每个原子操作由一个PlanFragment表示,通常一条查询语句由多个Plan Fragment组成, Plan Fragment 0表示执行树的根,汇聚结果返回给用户,执行树的叶子结点一般是Scan操作,分布式并行执行。
Java前端产生的执行计划树以Thrift数据格式返回给Impala C++后端(Coordinator)(执行计划分为多个阶段,每一个阶段叫做一个PlanFragment,每一个PlanFragment在执行时可以由多个Impalad实例并行执行(有些PlanFragment只能由一个Impalad实例执行,如聚合操作),整个执行计划为一执行计划树),由Coordinator根据执行计划,数据存储信息(Impala通过libhdfs与HDFS进行交互。通过hdfsGetHosts方法获得文件数据块所在节点的位置信息),通过调度器(现在只有simple-scheduler, 使用round-robin算法)Coordinator::Exec对生成的执行计划树分配给相应的后端执行器Impalad执行(查询会使用LLVM进行代码生成,编译,执行。对于使用LLVM如何提高性能这里有说明),通过调用GetNext()方法获取计算结果,如果是insert语句,则将计算结果通过libhdfs写回HDFS当所有输入数据被消耗光,执行结束,之后注销此次查询服务。
Impala的查询处理流程大概如图3所示:
图 3
下面以一个SQL查询语句为例分析Impala的查询处理流程。如select sum(id), count(id), avg(id) from customer_small group by id; 以此语句生成的计划为:
PLAN FRAGMENT 0
PARTITION: UNPARTITIONED4:EXCHANGE
tuple ids: 1PLAN FRAGMENT 1
PARTITION: HASH_PARTITIONED:STREAM DATA SINK
EXCHANGE ID: 4
UNPARTITIONED3:AGGREGATE
| output: SUM(), SUM( )
| group by:
| tuple ids: 1
|
2:EXCHANGE
tuple ids: 1PLAN FRAGMENT 2
PARTITION: RANDOMSTREAM DATA SINK
EXCHANGE ID: 2
HASH_PARTITIONED:1:AGGREGATE
| output: SUM(id), COUNT(id)
| group by: id
| tuple ids: 1
|
0:SCAN HDFS
table=default.customer_small #partitions=1 size=193B
tuple ids: 0
执行行计划树如图 4所示, 绿色的部分为可以分布式并行执行:
图 4
4. Impala相对于Hive所使用的优化技术
1、没有使用MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与MapReduce相比:Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。
2、使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。
3、充分利用可用的硬件指令(SSE4.2)。
4、更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
5、通过选择合适的数据存储格式可以得到最好的性能(Impala支持多种存储格式)。
6、最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。
5. Impala与Hive的异同
数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
元数据:两者使用相同的元数据。
SQL解释处理:比较相似都是通过词法分析生成执行计划。
执行计划:
Hive: 依赖于MapReduce执行框架,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。
数据流:
Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。
内存使用:
Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
Impala: 在遇到内存放不下数据时,当前版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。
调度:
Hive: 任务调度依赖于Hadoop的调度策略。
Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。
容错:
Hive: 依赖于Hadoop的容错能力。
Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。
适用面:
Hive: 复杂的批处理查询任务,数据转换任务。
Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。
6. Impala的优缺点
优点:
- 支持SQL查询,快速查询大数据。
- 可以对已有数据进行查询,减少数据的加载,转换。
- 多种存储格式可以选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
- 可以与Hive配合使用。
缺点:
- 不支持用户定义函数UDF。
- 不支持text域的全文搜索。
- 不支持Transforms。
- 不支持查询期的容错。
- 对内存要求高。
原文地址:Impala与Hive的比较, 感谢原作者分享。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











요즘 휴대폰의 성능과 기능은 점점 더 강력해지고 있습니다. 거의 모든 휴대폰에는 사용자의 모바일 결제 및 신원 인증을 용이하게 하는 편리한 NFC 기능이 탑재되어 있습니다. 그러나 일부 Xiaomi 14Pro 사용자는 NFC 기능을 활성화하는 방법을 모를 수 있습니다. 다음으로 자세히 소개해드리겠습니다. Xiaomi 14Pro에서 NFC 기능을 활성화하는 방법은 무엇입니까? 1단계: 휴대폰의 설정 메뉴를 엽니다. 2단계: "연결 및 공유" 또는 "무선 및 네트워크" 옵션을 찾아 클릭합니다. 3단계: 연결 및 공유 또는 무선 및 네트워크 메뉴에서 "NFC 및 결제"를 찾아 클릭합니다. 4단계: "NFC 스위치"를 찾아서 클릭하세요. 일반적으로 기본값은 꺼짐입니다. 5단계: NFC 스위치 페이지에서 스위치 버튼을 클릭하여 켜세요.

화면을 공중으로 밀어내는 것은 화웨이 메이트60 시리즈에서 높은 평가를 받는 화웨이의 기능이다. 이 기능은 휴대폰의 레이저 센서와 전면 카메라의 3D 깊이 카메라를 활용해 화면이 필요 없는 일련의 기능을 완성한다. 공중에서 TikTok을 스와이프하는 등 화면을 터치하는 기능이 있는데, Huawei Pocket 2를 사용하여 공중에서 TikTok을 스와이프하는 방법은 무엇인가요? Huawei Pocket2로 공중에서 스크린샷을 찍는 방법은 무엇입니까? 1. Huawei Pocket2의 설정을 엽니다. 2. 그런 다음 [접근성]을 선택합니다. 3. 클릭하여 [스마트 인식]을 엽니다. 4. [에어 스와이프 스크린], [에어 스크린샷], [에어 프레스] 스위치를 켜기만 하면 됩니다. 5. 사용 시 화면에서 20~40CM 거리를 두고 손바닥을 펴고 화면에 손바닥 아이콘이 나타날 때까지 기다려야 합니다.

WPS는 당사에서 흔히 사용하는 사무용 소프트웨어입니다. 긴 글을 편집할 때 글꼴이 너무 작아서 선명하게 보이지 않는 경우가 많아 글꼴과 전체 문서가 조정됩니다. 예를 들어 문서의 줄 간격을 조정하면 문서 전체가 매우 명확해집니다. 오늘은 구체적인 작업 단계를 알려드리겠습니다. 와서 살펴보세요. 조정하려는 WPS 텍스트 파일을 열고 [시작] 메뉴에서 단락 설정 툴바를 찾으면 작은 줄 간격 설정 아이콘(그림에서 빨간색 원으로 표시)이 표시됩니다. 2. 줄 간격 설정 오른쪽 하단에 있는 작은 역삼각형을 클릭하면 해당 줄 간격 값이 나타납니다. 줄 간격의 1~3배를 선택할 수 있습니다(그림의 화살표 참조). 3. 또는 해당 단락을 마우스 오른쪽 버튼으로 클릭하면 나타납니다.

아이폰16 프로의 CAD 파일이 노출됐는데, 디자인은 기존 루머와 일치한다. 지난해 가을 아이폰 15 프로에는 액션 버튼이 추가됐고, 올 가을 애플은 하드웨어 크기를 소폭 조정할 계획인 것으로 보인다. 캡처 버튼 추가 소문에 따르면 아이폰 16 프로는 두 번째 새 버튼을 추가할 수도 있는데, 이는 지난해에 이어 2년 연속 새 버튼이 추가되는 셈이다. 아이폰 16 프로에서는 새로운 캡처 버튼이 오른쪽 하단에 배치될 것이라는 소문이 돌고 있다. 이 디자인은 카메라 제어를 더욱 편리하게 하고 액션 버튼을 다른 기능에도 사용할 수 있게 할 것으로 예상된다. 이 버튼은 더 이상 일반 셔터 버튼이 아닙니다. 카메라에 관해서는 현재 iP에서

SpringDataJPA는 JPA 아키텍처를 기반으로 하며 매핑, ORM 및 트랜잭션 관리를 통해 데이터베이스와 상호 작용합니다. 해당 리포지토리는 CRUD 작업을 제공하고 파생 쿼리는 데이터베이스 액세스를 단순화합니다. 또한 지연 로딩을 사용하여 필요한 경우에만 데이터를 검색하므로 성능이 향상됩니다.

논문 주소: https://arxiv.org/abs/2307.09283 코드 주소: https://github.com/THU-MIG/RepViTRepViT는 모바일 ViT 아키텍처에서 잘 작동하며 상당한 이점을 보여줍니다. 다음으로, 본 연구의 기여를 살펴보겠습니다. 기사에서는 경량 ViT가 일반적으로 시각적 작업에서 경량 CNN보다 더 나은 성능을 발휘한다고 언급했는데, 그 이유는 주로 모델이 전역 표현을 학습할 수 있는 MSHA(Multi-Head Self-Attention 모듈) 때문입니다. 그러나 경량 ViT와 경량 CNN 간의 아키텍처 차이점은 완전히 연구되지 않았습니다. 본 연구에서 저자는 경량 ViT를 효과적인

C 언어와 PHP의 차이점 및 비교 분석 C 언어와 PHP는 모두 일반적인 프로그래밍 언어이지만 여러 측면에서 분명한 차이점이 있습니다. 이 기사에서는 C 언어와 PHP를 비교 분석하고 구체적인 코드 예제를 통해 이들 간의 차이점을 설명합니다. 1. 구문 및 사용법: C 언어: C 언어는 프로세스 지향 프로그래밍 언어로 주로 시스템 수준 프로그래밍 및 임베디드 개발에 사용됩니다. C 언어의 구문은 상대적으로 간단하고 저수준이며, 메모리를 직접 조작할 수 있고 효율적이고 유연합니다. C 언어는 프로그래머의 프로그램 완성도를 강조합니다.

Go 프레임워크 아키텍처의 학습 곡선은 Go 언어 및 백엔드 개발에 대한 친숙도와 선택한 프레임워크의 복잡성, 즉 Go 언어의 기본 사항에 대한 올바른 이해에 따라 달라집니다. 백엔드 개발 경험이 있으면 도움이 됩니다. 다양한 복잡성의 프레임워크는 다양한 학습 곡선으로 이어집니다.
