목차
前言
背景介绍
需求描述
问题分析
延迟
状态变更
顺序问题
解决方案
小结
系列总结
데이터 베이스 MySQL 튜토리얼 非阻塞同步算法实战(三)-LatestResultsProvider

非阻塞同步算法实战(三)-LatestResultsProvider

Jun 07, 2016 pm 04:32 PM
동기식 실제 전투 연산 차단하다

感谢trytocatch投递本文。 前言 阅读本文前,需要读者对happens-before比较熟悉,了解非阻塞同步的一些基本概念。本文主要为happens-before法则的灵活运用,和一些解决问题的小技巧,分析问题的方式。 背景介绍 原始需求为:本人当时在编写一个正则替换工具

感谢trytocatch投递本文。

前言

阅读本文前,需要读者对happens-before比较熟悉,了解非阻塞同步的一些基本概念。本文主要为happens-before法则的灵活运用,和一些解决问题的小技巧,分析问题的方式。

背景介绍

原始需求为:本人当时在编写一个正则替换工具,里面会动态地显示所有的匹配结果(包括替换预览),文本、正则表达式、参数,这些数据的其中一项发生了变化,结果就应该被更新,为了提供友好的交互体验,数据变化时,应该是发起一个异步请求,由另一个独立的线程来完成运算,完成后通知UI更新结果。由于是动态显示,所以提交会非常频繁。

需求描述

需要这样一个工具类,允许用户频繁地提交数据(本文之后以“submit”表示该操作)和更新结果(本文之后以“update”表示该操作),submit时,如果当前有进行中的运算,则应该取消,使用新参数执行新的运算;update时,如果当前没有进行中的运算(处于阻塞状态),并且当前结果不是最新的,则唤醒该线程,使用当前的新数据,执行新的运算。此处之所以分为submit和update两个方法,是为了支持手动更新,即点击更新按钮时,才更新结果。

此外,出于练手的原因,也出于编写一个功能全面,更实用的工具的目的,我还加入了一些额外的需求:

1、引入多线程场景,update和submit均可由多个线程同时发起,该工具类应设计成线程安全的。

2、允许延迟执行运算,如果延时内执行submit,仅重新计算延时。如果运算不方便取消,在短时间频繁submit的场景下,延时会是一个很好的应对办法。

3、允许设置一个最大延迟时间,作为延迟开启运算的补充。当长时间频繁submit时,会形成这样的局面,一直未进入运算环节,新结果计算不出来,上一次计算结果却是很早以前的。如果需要显示一个较新但不是最新的结果,最大延迟时间将会很有用。

4、提供主动取消方法,主动取消正在进行的运算。

5、update时,允许等待运算完成,同时也可设置超时时间。当主动取消、超时、完成了当前或更(更加的意思)新的数据对应的运算时,结束等待。

需求交待完了,有兴趣有精力的读者,可以先试着思考下怎么实现。

问题分析

该工具应该维护一个状态字段,这样才能在发起某个操作时,根据所处的状态作出正确的动作,如:如果当前不处于停止状态(或者主动取消状态,原因见下文),执行update就不需要唤醒运算线程。简单分析可知,至少应该有这样几种状态:

1、停止状态:当前没有运算任务,线程进入阻塞状态,主动取消和运算完成后,进入该状态

2、延迟状态:设置了延迟开启运算时,进入运算前,处于该状态

3、运算状态:正在执行运算

4、主动取消状态:当发起主动取消时,进入该状态

5、新任务状态:当时有新的运算任务时,进入该状态,然后重新进入运算状态

延迟

再来看一下延迟,如果延迟500毫秒,就每次sleep(500),那么期间再submit怎么办?将它唤醒然后重新sleep(500)吗?显然不行,成本太大了。

我有一个小技巧:将500分成多个合适的等份,使用一个计数器,每次sleep一个等份,计数器加1,如果发起submit,仅把计数器置0即可,虽然看起来线程的状态切换变多了,但应对频繁重置时,它更稳定。虽然时间上会上下波动一个等份,但此处并不需要多么精确。

现在还面临这样一个问题,如何知道当前是处于延迟状态并计数器置0?取出状态值进行判断,然后置0,这方法显然不行,因为置0的时候,可能状态已经变了,所以你无法知道该操作是否生效了。

我想到的办法是,再引入一个延迟重置状态。如果处于该状态,则下一次计数器加1时,将计数器重置,状态变更是可以知道成功与否的。

状态变更

有些状态的变更是有条件的,比如说当前处于取消状态,就不能把它转为运算状态,运算状态只能由新任务状态、延迟状态(延迟完成后执行运算)或延迟重置状态转入。这种场景正好跟CAS一致,所以,使用一个AtomicInteger来表示状态。

分析下各状态之间的转换,可以得出下面的状态变更图:

状态变更图

蓝色的a(bcd)|(e)f线路为停止状态下,发起一次update,运算完重新回到停止的过程,开启延迟时是bcd,否则是e。

红色的线j表示超过了最大延迟时间,退出延迟,进入运算状态(也可以是d)。

绿色的线ghi(包括a)表示:如果发起了submit或update,状态应该怎么改变。如果处于延迟重置、新任务则不需要进行任何操作;如果处于延迟状态,则转为延迟重置即可;如果处于运算状态,则可能使用了旧参数,应该转为新任务;如果为主动取消或停止状态,并且是调用update方法,则转为新任务,并且可能处于阻塞状态,应该唤醒该线程。

黑色的线l表示,可在任意状态下发起主动取消,进入该状态。然后通知等待线程后,转入停止状态,对应紫色的k,如果在停止状态下发起主动取消,则仅转为主动取消状态,不会通知等待线程。所以当线程阻塞时,可能处于停止状态或者主动取消状态。

顺序问题

上面已经分析到,当submit时,应该把延迟转为延迟重置、或运算转为新任务,这两个尝试的顺序是不是也有讲究呢?

是的,因为正常执行流程a(bcd)|(e)f中,运算状态在延迟状态之后,假如先尝试运算转为新任务,可能此时为延迟状态,故失败,再尝试延迟转为延迟重置时,状态在这期间从刚才的延迟转为了运算,故两次尝试都失败了,本应该重置延迟的,却什么也没干,这是错误的。而将两次尝试顺序调换一下,只要状态为延迟或运算,那么两次状态转换尝试中,一定有一次会成功。

之后的代码中还有多处类似的顺序细节。

解决方案

下面给出完整的代码,除去等待运算完成那部分,其它地方均为wait-free级别的实现。

calculateResult是具体执行运算的方法;上文中的submit对应代码里的updateParametersVersion方法,上文中的update对应剩余几个update方法。

updateAndWait方法中,使用了上一篇中讲到的BoundlessCyclicBarrier,其维护的版本号就是参数的版本号ParametersVersion。

/**
 * @author trytocatch@163.com
 * @date 2013-2-2
 */
public abstract class LatestResultsProvider {
    /** update return value */
    public static final int UPDATE_FAILED = -1;
    public static final int UPDATE_NO_NEED_TO_UPDATE = 0;
    public static final int UPDATE_SUCCESS = 1;
    public static final int UPDATE_COMMITTED = 2;
    /** update return value */
    /** work states*/
    private static final int WS_OFF = 0;
    private static final int WS_NEW_TASK = 1;
    private static final int WS_WORKING = 2;
    private static final int WS_DELAYING = 3;
    private static final int WS_DELAY_RESET = 4;
    private static final int WS_CANCELED = 5;
    /** work states*/
    private final AtomicInteger workState;
    private int sleepPeriod = 30;
    private final AtomicInteger parametersVersion;
    private volatile int updateDelay;// updateDelay>=0
    private volatile int delayUpperLimit;
    private final BoundlessCyclicBarrier barrier;
    private Thread workThread;
    /**
     *
     * @param updateDelay unit: millisecond
     * @param delayUpperLimit limit the sum of the delay, disabled
     * while delayUpperLimit 0 ? WS_DELAY_RESET : WS_WORKING)) {
                            if (workState.compareAndSet(WS_CANCELED, WS_OFF)) {
                                barrier.cancel();
                            }
                            LockSupport.park();
                            interrupted();
                        }
                        if (workState.get() == WS_DELAY_RESET) {
                            int delaySum = 0;
                            for (;;) {
                                if (workState.compareAndSet(WS_DELAY_RESET,
                                        WS_DELAYING)) {
                                    sleepCount = (updateDelay + sleepPeriod - 1)
                                            / sleepPeriod;
                                }
                                sleep(sleepPeriod);
                                if (--sleepCount = 0) {
                                    delaySum += sleepPeriod;
                                    if (delaySum >= delayUpperLimit) {
                                        if (!workState.compareAndSet(
                                                WS_DELAYING, WS_WORKING))
                                            workState.compareAndSet(
                                                    WS_DELAY_RESET, WS_WORKING);
                                        break;
                                    }
                                }
                                if (workState.get() != WS_DELAYING
                                        && workState.get() != WS_DELAY_RESET)
                                    break;
                            }
                        }
                        if (isWorking()) {
                            int workingVersion = parametersVersion.get();
                            try {
                                calculateResult();
                                if (workState.compareAndSet(WS_WORKING, WS_OFF))
                                    barrier.nextCycle(workingVersion);
                            } catch (Throwable t) {
                                t.printStackTrace();
                                workState.set(WS_CANCELED);
                            }
                        }
                    } catch (InterruptedException e) {
                        workState.compareAndSet(WS_DELAYING, WS_CANCELED);
                        workState.compareAndSet(WS_DELAY_RESET, WS_CANCELED);
                    }
                }// for(;;)
            }// run()
        };
        workThread.setDaemon(true);
        workThread.start();
    }
    public int getUpdateDelay() {
        return updateDelay;
    }
    /**
     * @param updateDelay
     *            delay time. unit: millisecond
     */
    public void setUpdateDelay(int updateDelay) {
        this.updateDelay = updateDelay 
<p>代码中,我直接在构造方法里开启了新的线程,一般来说,是不推荐这样做的,但在此处,除非在构造还未完成时就执行update方法,否则不会引发什么问题。</p>
<p>最后,附上该正则替换工具的介绍和下载地址:http://www.cnblogs.com/trytocatch/p/RegexReplacer.html</p>
<h2 id="小结">小结</h2>
<p>状态变更非常适合使用非阻塞算法,并且还能够达到wait-free级别。限于篇幅,有些没讲到的细节,请读者借助代码来理解吧,如有疑问,欢迎回复讨论。</p>
<h2 id="系列总结">系列总结</h2>
<p>本实战系列就到此结束了,简单总结下。</p>
<p>非阻塞同步相对于锁同步而言,由代码块,转为了点,是另一种思考方式。</p>
<p>有时,无法做到一步完成,也许可以分成两步完成,同样可以解决问题,ConcurrentLinkedQueue就是这么做的。</p>
<p>如果需要维护多个数据之间的某种一致关系,则可以将它们封装到一个类中,更新时采用更新该类对象的引用的方式。</p>
<p>众所周知,锁同步算法是难以测试的,非阻塞同步算法更加难以测试,我个人认为,其正确性主要靠慎密的推敲和论证。</p>
<p>非阻塞同步算法比锁同步算法要显得更复杂些,如果对性能要求不高,对非阻塞算法掌握得还不太熟练,建议不要使用非阻塞算法,锁同步算法要简洁得多,也更容易维护,如上面所说的,两条看似没有顺序的语句,调换下顺序,可能就会引发BUG。</p>

    <p class="copyright">
        原文地址:非阻塞同步算法实战(三)-LatestResultsProvider, 感谢原作者分享。
    </p>
    
    


로그인 후 복사
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

동기화한 폴더에 있는 하나 이상의 항목이 Outlook 오류와 일치하지 않습니다. 동기화한 폴더에 있는 하나 이상의 항목이 Outlook 오류와 일치하지 않습니다. Mar 18, 2024 am 09:46 AM

동기화 폴더에 있는 하나 이상의 항목이 Outlook의 오류 메시지와 일치하지 않는 경우 모임 항목을 업데이트하거나 취소했기 때문일 수 있습니다. 이 경우 로컬 버전의 데이터가 원격 복사본과 충돌한다는 오류 메시지가 표시됩니다. 이 상황은 일반적으로 Outlook 데스크톱 응용 프로그램에서 발생합니다. 동기화한 폴더에 있는 하나 이상의 항목이 일치하지 않습니다. 충돌을 해결하려면 프로젝트를 열고 작업을 다시 시도하십시오. 동기화된 폴더에 있는 하나 이상의 항목이 Outlook 오류와 일치하지 않는 문제 해결 Outlook 데스크톱 버전에서는 로컬 일정 항목이 서버 복사본과 충돌할 때 문제가 발생할 수 있습니다. 하지만 다행히도 도움을 줄 수 있는 몇 가지 간단한 방법이 있습니다.

CLIP-BEVFormer: BEVFormer 구조를 명시적으로 감독하여 롱테일 감지 성능을 향상시킵니다. CLIP-BEVFormer: BEVFormer 구조를 명시적으로 감독하여 롱테일 감지 성능을 향상시킵니다. Mar 26, 2024 pm 12:41 PM

위에 작성 및 저자의 개인적인 이해: 현재 전체 자율주행 시스템에서 인식 모듈은 중요한 역할을 합니다. 자율주행 시스템의 제어 모듈은 적시에 올바른 판단과 행동 결정을 내립니다. 현재 자율주행 기능을 갖춘 자동차에는 일반적으로 서라운드 뷰 카메라 센서, 라이더 센서, 밀리미터파 레이더 센서 등 다양한 데이터 정보 센서가 장착되어 다양한 방식으로 정보를 수집하여 정확한 인식 작업을 수행합니다. 순수 비전을 기반으로 한 BEV 인식 알고리즘은 하드웨어 비용이 저렴하고 배포가 용이하며, 출력 결과를 다양한 다운스트림 작업에 쉽게 적용할 수 있어 업계에서 선호됩니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

C++sort 함수의 기본 원리와 알고리즘 선택을 살펴보세요. C++sort 함수의 기본 원리와 알고리즘 선택을 살펴보세요. Apr 02, 2024 pm 05:36 PM

C++정렬 함수의 맨 아래 계층은 병합 정렬을 사용하고 복잡도는 O(nlogn)이며 빠른 정렬, 힙 정렬 및 안정 정렬을 포함한 다양한 정렬 알고리즘 선택을 제공합니다.

PHP 실용: 피보나치 수열을 빠르게 구현하는 코드 예제 PHP 실용: 피보나치 수열을 빠르게 구현하는 코드 예제 Mar 20, 2024 pm 02:24 PM

PHP 연습: 피보나치 수열을 빠르게 구현하기 위한 코드 예제 피보나치 수열은 수학에서 매우 흥미롭고 일반적인 수열로 다음과 같이 정의됩니다. 첫 번째와 두 번째 숫자는 0과 1이고, 세 번째부터 숫자로 시작하여 각 숫자가 나옵니다. 이전 두 숫자의 합입니다. 피보나치 수열의 처음 몇 숫자는 0,1,1.2,3,5,8,13,21 등입니다. PHP에서는 재귀와 반복을 통해 피보나치 수열을 생성할 수 있습니다. 아래에서는 이 두 가지를 보여드리겠습니다.

탐지 알고리즘 개선: 고해상도 광학 원격탐사 이미지에서 표적 탐지용 탐지 알고리즘 개선: 고해상도 광학 원격탐사 이미지에서 표적 탐지용 Jun 06, 2024 pm 12:33 PM

01 전망 요약 현재로서는 탐지 효율성과 탐지 결과 간의 적절한 균형을 이루기가 어렵습니다. 우리는 광학 원격 탐사 이미지에서 표적 감지 네트워크의 효과를 향상시키기 위해 다층 특징 피라미드, 다중 감지 헤드 전략 및 하이브리드 주의 모듈을 사용하여 고해상도 광학 원격 감지 이미지에서 표적 감지를 위한 향상된 YOLOv5 알고리즘을 개발했습니다. SIMD 데이터 세트에 따르면 새로운 알고리즘의 mAP는 YOLOv5보다 2.2%, YOLOX보다 8.48% 우수하여 탐지 결과와 속도 간의 균형이 더 잘 이루어졌습니다. 02 배경 및 동기 원격탐사 기술의 급속한 발전으로 항공기, 자동차, 건물 등 지구 표면의 많은 물체를 묘사하기 위해 고해상도 광학 원격탐사 영상이 활용되고 있다. 원격탐사 이미지 해석에서 물체 감지

인공지능이 범죄를 예측할 수 있을까? CrimeGPT의 기능 살펴보기 인공지능이 범죄를 예측할 수 있을까? CrimeGPT의 기능 살펴보기 Mar 22, 2024 pm 10:10 PM

인공지능(AI)과 법 집행의 융합은 범죄 예방 및 탐지의 새로운 가능성을 열어줍니다. 인공지능의 예측 기능은 범죄 행위를 예측하기 위해 CrimeGPT(범죄 예측 기술)와 같은 시스템에서 널리 사용됩니다. 이 기사에서는 범죄 예측에서 인공 지능의 잠재력, 현재 응용 프로그램, 직면한 과제 및 기술의 가능한 윤리적 영향을 탐구합니다. 인공 지능 및 범죄 예측: 기본 CrimeGPT는 기계 학습 알고리즘을 사용하여 대규모 데이터 세트를 분석하고 범죄가 발생할 가능성이 있는 장소와 시기를 예측할 수 있는 패턴을 식별합니다. 이러한 데이터 세트에는 과거 범죄 통계, 인구 통계 정보, 경제 지표, 날씨 패턴 등이 포함됩니다. 인간 분석가가 놓칠 수 있는 추세를 식별함으로써 인공 지능은 법 집행 기관에 권한을 부여할 수 있습니다.

58 초상화 플랫폼 구축에 알고리즘 적용 58 초상화 플랫폼 구축에 알고리즘 적용 May 09, 2024 am 09:01 AM

1. 58초상화 플랫폼 구축 배경 먼저, 58초상화 플랫폼 구축 배경에 대해 말씀드리겠습니다. 1. 기존 프로파일링 플랫폼의 전통적인 사고로는 더 이상 충분하지 않습니다. 사용자 프로파일링 플랫폼을 구축하려면 여러 비즈니스 라인의 데이터를 통합하여 정확한 사용자 초상화를 구축하는 데이터 웨어하우스 모델링 기능이 필요합니다. 그리고 알고리즘 측면의 기능을 제공해야 하며, 마지막으로 사용자 프로필 데이터를 효율적으로 저장, 쿼리 및 공유하고 프로필 서비스를 제공할 수 있는 데이터 플랫폼 기능도 있어야 합니다. 자체 구축한 비즈니스 프로파일링 플랫폼과 중간 사무실 프로파일링 플랫폼의 주요 차이점은 자체 구축한 프로파일링 플랫폼이 단일 비즈니스 라인에 서비스를 제공하고 필요에 따라 사용자 정의할 수 있다는 것입니다. 모델링하고 보다 일반적인 기능을 제공합니다. 2.58 Zhongtai 초상화 구성 배경의 사용자 초상화

See all articles