LinkedIn数据架构剖析
LinkedIn是当今最流行的专业社交网站之一,本文描述了LinkedIn是如何管理数据的。如你对文中的观点有异议亦或文中有遗漏的部分请随时告诉我。 LinkedIn.com数据用例 下面是一些数据用例,可能我们在浏览LinkedIn网页时都已经看到过了。 更新后的个人资料后几
LinkedIn是当今最流行的专业社交网站之一,本文描述了LinkedIn是如何管理数据的。如你对文中的观点有异议亦或文中有遗漏的部分请随时告诉我。
LinkedIn.com数据用例
下面是一些数据用例,可能我们在浏览LinkedIn网页时都已经看到过了。- 更新后的个人资料后几乎可以实时的出现在招聘搜索页面
- 更新后的个人资料后几乎可以实时的出现在人脉网页
- 分享一个更新,可以近实时的出现在新闻feed页面
- 然后会更新到其他只读页面,像”你可能认识的人“、”看过我资料的人“、”相关搜索“等。
令人震惊的是,如果我们使用较好的宽带,这些页面可以在数毫秒内完成加载!让我们向LinkedIn工程师团队致敬!
早期的LinkedIn数据架构
像其它初创公司一样,LinkedIn 早期也是通过单个的RDBMS (关系型数据库管理系统)的几张表来保存用户资料和人脉关系。是不是很原始?后来这个RDMBS扩展出两个额外的数据库系统,其中一个用来支撑用户个人资料的全文搜索,另一个用来实现社交图。这两个数据库通过Databus来取得最新数据。Databus是一个变化捕捉系统,它的主要目标就是捕捉那些来至可信源(像Oracle)中数据集的变更,并且把这些变化更新到附加数据库系统中。 但是,没过多久这种架构就已经很难满足网站的数据需求了。因为按照Brewerd的CAP理论想要同时满足下面的条件看似不太可能: 一致性:所有应用在同一时刻看到相同的数据 可用性:保证每个请求都能收到应答,无论成功或失败 分区容错性:部分系统的消息丢失或失败不影响系统系统整体的正常运行根据上面的法则,LinkedIn工程师团队实现了他们称作为时间线一致性(或者说近线系统的最终一致性,下面会解释)以及另外两个特性:可用性和分区容错性。下面介绍目前LinkedIn的数据架构。
LinkedIn如今的数据架构
如果要支撑在不到一秒钟内处理数百万用户的相关事务,上面的数据架构已经明显不足了。因此,LinkedIn 工程师团队提出了三段式(three-phase)数据架构,由在线、离线以及近线数据系统组成。总体上讲,LinkedIn数据被存储在如下几种不同形式的数据系统中(看下面的图):-
RDBMS
- Oracle
- MySQL(作为Espresso的底层数据存储)
-
RDBMS
- Espresso(LinkedIn自己开发的文档型NoSQL数据存储系统)
- Voldemart (分布式Key-value存储系统)
- HDFS (存放Hadoop map-reduce任务的数据)
-
Caching
- Memcached
-
基于Lucene的索引
- 存放查询、关系图等功能数据的Lucene 索引
- Espresso使用的索引
图:LinkedIn数据库系统包括了DataBus、NoSQL、RDBMS以及Indexes
在线数据库系统
在线系统处理用户的实时互动;主数据库像Oracle就属于这一类别。主数据存储用来支撑用户的写操作和少量的读操作。以Orcale为例,Oracle master会执行所有的写操作。最近,LinkedIn正在开发另一个叫做“Espresso”的数据系统来满足日益复杂的数据需求,而这些数据看似不应从像Oracle这类的RDBMS中获取。他们能否淘汰所有或大部分的Oracle并将数据完全转移到像Espresso这类的NoSQL数据存储系统中去?让我们拭目以待。Espresso是一个支持水平扩展、索引、时间线一致性、基于文档且高可用的NoSQL数据仓库,旨在代替支撑公司网页操作所使用的传统Oracle数据库。设计它的初衷是为了提高LinkedIn的InMail消息服务的可用性。目前有如下一些应用在使用Espresso作为可信源系统。能够看到NoSQL数据存储是如果被用来处理如此众多应用的数据需求很是神奇!
- 成员间消息,
- 社交动作,如:更新
- 文章分享
- 用户个人资料
- 公司资料
- 新闻文章
离线数据库系统
离线系统主要包括Hadoop和一个Teradata数据仓库,用来执行批处理和分析类的工作。之所以被称为离线是因为它对数据执行的的批处理操作。?Apache Azkaban被用来管理Hadoop和ETL任务,这些任务从主可信源系统获取数据后交由map-reduce处理,处理结果被保存在HDFS,然后通知’消费者‘(例如:Voldemart)通过合适的方式来获取这些数据并切换索引来保证能获取到最新的数据。近线数据库系统(时间线一致性)
近线系统的目标是为了实现时间线一致性(或最终一致性),它处理类似’你可能认识的人(只读数据集)‘、搜索以及社交图这些功能,这些功能的数据会持续更新,但它们对延迟性的要求并不像在线系统那样高。下面是几种不同类型的近线系统:- Voldemart,一个Key-Value存储系统,为系统中的只读页面提供服务。Voldemart的数据来源于Hadoop框架(Hadoop Azkaban:编排Hadoop map-reduce任务的执行计划)。这就是近线系统,它们从类似Hadoop的离线系统获取数据。下面这些页面的数据都是来自于Voldemart:
- 你可能认识的人
- 看过本页面的人还在看
- 相关搜索
- 你可能感兴趣的工作
- 你可能感兴趣的事件
- 下面是几种不同的索引,这些索引由Databus-一个变化数据捕捉系统-来更新的:
- 供SeaS(Search-as-a-Service)使用的’成员搜索索引‘。当你在LinkedIn上搜索不同的成员时,这些数据就是来自于搜索索引。通常这个功能对招聘人员的帮助很大。
- 社交图索引帮助在人们的人脉关系中显示成员以及关系。通过这个索引用户几乎可以实时的得到网络关系的变化。
- 通过读复制集获取到的成员资料数据。这些数据会被’标准化服务‘访问。读复制集是对源数据库的复制,这样能使源数据库的更新同步到这些复制集上面。增加读复制集的最主要原因是能够通过将读操查询分散到读复制集上来减轻源数据库(执行用户发起的写操作)的压力。

用数据用例来展示它们是如何工作的
假如你更新了你个人资料中的最新技能和职位。你还接受了一个连接请求。那么在系统内部到底发生了什么:
- 将更新写入Oracle Master数据库
- 然后Databus做了如下一系列奇妙的工作来实现时间线一致性:
- 将资料变更,如最新技能和职位信息,更新到标准化服务。
- 将上面提到的变更更新到搜索索引服务。
- 将关系变更更新到图索引服务。
数据架构经验
如果要设计一个像LinkedIn.com一样的支持数据一致性、高扩展性且高可用性的数据架构,可以借鉴下面的经验:- 数据库读写分离:你应当计划两种数据库,一种用来执行写操作的可以称为“可信源”系统,另一种执行读操作的可以称为派生数据库系统。这里的经验法则就是将由用户发起的写操作和用户读操作使用的数据库区分开来。
-
派生数据库系统:用户的读操作应该被分配到派生数据库或者读复制集上去。而派生数据库系统则可以建立在下面的系统之上:
- Lucene 索引
- NoSQL数据存储,例如:Voldemart、Redis、Cassandra、MongoDB等。
- 对于用户的读操作,应该尽量从主可信源数据库系统创建索引或者基于key-value的数据(来源于Hadoop map-reduce之类的系统),并且将每次由用户发起的被写入主可信源系统的变更一并更新到这些索引或派生数据(key-value)。
- 为确保派生数据库系统的数据是最新的,你可以选择应用复写(application-dual writes),即在应用层同时写入主数据库和派生数据库系统,或日志挖掘(读取通过批处理任务得到的主数据存储系统的事务提交日志)。
- 创建派生数据时,你可以针对主数据集或者变更数据集执行基于Hadoop的map-reduce任务,然后更新HDFS并且通知派生数据存储系统(类似Voldemart的NoSQL存储)来取走数据。
- 对于数据一致性来说,你可以以将这些数据存储库创建为分布式系统,集群中的每个节点又都包含主从节点。所有节点都可以创建水平扩展的数据Shards。
- 为了保证这些分布式数据存储系统正常运行时间最大化,你可以使用像Apache Helix这一类的集群管理工具。
参考文献
- Siddarth Anand LinkedIn Data Infrastructure paper
- https://github.com/linkedin/databus
- http://gigaom.com/2013/03/03/how-and-why-linkedin-is-becoming-an-engineering-powerhouse/
- http://highscalability.com/blog/2012/3/19/linkedin-creating-a-low-latency-change-data-capture-system-w.html
- 转自:http://blog.jobbole.com/69344/
原文地址:LinkedIn数据架构剖析, 感谢原作者分享。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











DDREASE는 하드 드라이브, SSD, RAM 디스크, CD, DVD 및 USB 저장 장치와 같은 파일 또는 블록 장치에서 데이터를 복구하기 위한 도구입니다. 한 블록 장치에서 다른 블록 장치로 데이터를 복사하여 손상된 데이터 블록은 남겨두고 양호한 데이터 블록만 이동합니다. ddreasue는 복구 작업 중에 간섭이 필요하지 않으므로 완전히 자동화된 강력한 복구 도구입니다. 게다가 ddasue 맵 파일 덕분에 언제든지 중지하고 다시 시작할 수 있습니다. DDREASE의 다른 주요 기능은 다음과 같습니다. 복구된 데이터를 덮어쓰지 않지만 반복 복구 시 공백을 채웁니다. 그러나 도구에 명시적으로 지시된 경우에는 잘릴 수 있습니다. 여러 파일이나 블록의 데이터를 단일 파일로 복구

0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

이번 주, 오픈AI(OpenAI), 마이크로소프트(Microsoft), 베조스(Bezos), 엔비디아(Nvidia)가 투자한 로봇 회사인 FigureAI는 약 7억 달러의 자금 조달을 받았으며 내년 내에 독립적으로 걸을 수 있는 휴머노이드 로봇을 개발할 계획이라고 발표했습니다. 그리고 Tesla의 Optimus Prime은 계속해서 좋은 소식을 받았습니다. 올해가 휴머노이드 로봇이 폭발하는 해가 될 것이라는 데는 누구도 의심하지 않는다. 캐나다에 본사를 둔 로봇 회사인 SanctuaryAI는 최근 새로운 휴머노이드 로봇인 Phoenix를 출시했습니다. 관계자들은 이 로봇이 인간과 같은 속도로 자율적으로 많은 작업을 완료할 수 있다고 주장한다. 인간의 속도로 자동으로 작업을 완료할 수 있는 세계 최초의 로봇인 Pheonix는 각 물체를 부드럽게 잡고 움직이며 우아하게 왼쪽과 오른쪽에 배치할 수 있습니다. 자동으로 물체를 식별할 수 있습니다.

다중 모드 문서 이해 기능을 위한 새로운 SOTA! Alibaba mPLUG 팀은 최신 오픈 소스 작업인 mPLUG-DocOwl1.5를 출시했습니다. 이 작품은 고해상도 이미지 텍스트 인식, 일반 문서 구조 이해, 지침 따르기, 외부 지식 도입이라는 4가지 주요 과제를 해결하기 위한 일련의 솔루션을 제안했습니다. 더 이상 고민하지 말고 먼저 효과를 살펴보겠습니다. 복잡한 구조의 차트도 한 번의 클릭으로 인식하고 마크다운 형식으로 변환 가능: 다양한 스타일의 차트 사용 가능: 보다 자세한 텍스트 인식 및 위치 지정도 쉽게 처리 가능: 문서 이해에 대한 자세한 설명도 제공 가능: 아시다시피, " 문서 이해"는 현재 대규모 언어 모델 구현을 위한 중요한 시나리오입니다. 시장에는 문서 읽기를 지원하는 많은 제품이 있습니다. 그 중 일부는 주로 텍스트 인식을 위해 OCR 시스템을 사용하고 텍스트 처리를 위해 LLM을 사용합니다.
