InnoDB memcached插件vs原生memcached对比性能测试
MySQL 5.6开始支持InnoDB memcached插件,也就是可以通过SQL高效读写memcached里的缓存内容,也支持用原生的memcache协议读写,并且可以实现缓存数据持久化,以及crash recovery、mysql replication、触发器、存储过程等众多特性,详细介绍可以查看:Benefit
MySQL 5.6开始支持InnoDB memcached插件,也就是可以通过SQL高效读写memcached里的缓存内容,也支持用原生的memcache协议读写,并且可以实现缓存数据持久化,以及crash recovery、mysql replication、触发器、存储过程等众多特性,详细介绍可以查看:Benefits of the InnoDB / memcached Combination。看起来非常诱人,那就测试下看看吧,是驴子是马拉出来溜溜便知。
- 环境准备
测试机 | DELL PE R710 |
CPU | E5620? @ 2.40GHz(4 core, 8 threads, L3 Cache 12 MB) * 2 |
内存 | 48G(8G * 6) |
RAID卡 | PERC H700 Integrated, 512MB, BBU, 12.10.1-0001 |
系统 | Red Hat Enterprise Linux Server release 6.4 (Santiago) |
内核 | 2.6.32-358.el6.x86_64 #1 SMP |
raid级别 | raid 5(10K RPM SAS 300G * 6) |
文件系统 | xfs |
硬盘 | 10K RPM SAS 300G * 6, 1 hotspare |
- 测试方案
方案一 | server端运行InnoDB MC,本地/远程调用memslap执行benchmark |
方案二 | server端运行Native MC,本地/远程调用memslap执行benchmark |
- 测试脚本
cat memslap_run.sh #!/bin/sh . ~/.bash_profile > /dev/null 2>&1 cd /home/mc-bench exec 3>&1 4>&2 1>> memcache_memslap_${RANDOM}.log 2>&1 #不断循环 while [ 1 ] do #并发线程数 4 ~ 256 for THREAD in 4 8 16 32 64 128 256 do #每种并发测试5次 count=1 max=5 while [ $count -le ${max} ] do #取样 echo "memstat" memstat # --flush 每次测试完毕钱,都先清空数据 # --binary 采用binary模式 # 初始化数据: 5000000, 每个并发线程存取数据量: 100000 # 并发256线程时, 总数据量可达 30,600,000 # 未指定 --test 选项,默认是进行 set 测试 memslap --server=mc_server:11211 --concurrency=${THREAD} --execute-number=100000 --initial-load=5000000 --flush --binary count=`expr ${count} + 1` #每次测试完毕后,都休息2分钟,等待服务器恢复空负载 if [ ${count} -lt ${max} ] ; then sleep 120 fi echo "" echo "" done done done
- 测试结果
1. 写MC
? ? ? ? ? ? ? ?线程数 耗时 |
256 | 128 | 64 | 32 | 16 | 8 | 4 |
NativeMC(单位:1秒) | 104.315 | 47.646 | 24.486 | 12.162 | 6.351 | 5.525 | 5.078 |
InnoDBMC(单位:100秒) | 339.1431 | 68.11128 | 27.67265 | 11.26917 | 4.968556 | 2.24988 | 1.104334 |
直接以曲线图方式对比:
nativemc-vs-innodbmc-benchmark-02-set-result-20130828
2. 读MC
??????? 线程数 耗时 |
4线程并发,2千万记录 |
本地Native MC | 198.5016 |
本地InnoDB MC | 327.239 |
远程Native MC | 846.286 |
远程InnoDB MC | 912.467 |
曲线图方式对比:
nativemc-vs-innodbmc-benchmark-03-get-result-20130828
- 结论
InnoDB MC看起来很美好,现实很骨感,其并发4线程写数据需呀的耗时,和原生memcached的256线程相当,差的不是一丁半点啊,还有很大优化空间。
而如果是缓存只读,InnoDB MC本地读取的效率大概是原生memcached的2/3,如果是远程读取,则相当于是本地读取效率的1/4 ~ 1/3。
- 建议应用场景
鉴于上面的测试结果,建议将InnoDB MC这么来用:
1. 数据写入通过触发器(trigger)或者调度器(event scheduler)将待缓存数据同步到InnoDB MC缓存表中;
2. 以memcache API方式,通过本地/远程读取InnoDB MC中的缓存记录;
3. 尽可能减少通过远程方式往InnoDB MC写缓存数据;
原文地址:InnoDB memcached插件vs原生memcached对比性能测试, 感谢原作者分享。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











현재 통화계에서 선호하는 잠재적 코인으로는 SOL 코인과 BCH 코인이 있습니다. SOL은 솔라나 블록체인 플랫폼의 기본 토큰이며 비트코인의 포크 통화인 BitcoinCash 프로젝트의 토큰입니다. 기술적 특성, 적용 시나리오, 개발 방향이 다르기 때문에 투자자들이 둘 중 하나를 선택하기가 어렵습니다. SOL 통화와 BCH 중 어느 것이 더 잠재력이 있는지 분석하고 싶습니다. 다시 투자하세요. 그러나 통화를 비교하려면 시장, 개발 전망, 프로젝트 강도 등에 따른 종합적인 분석이 필요합니다. 다음에는 에디터가 자세히 알려드리겠습니다. SOL 코인과 BCH 중 어느 것이 더 잠재력이 있나요? 이에 비해 SOL 통화는 더 많은 잠재력을 가지고 있습니다. SOL 통화 또는 BCH 중 어느 것이 더 많은 잠재력을 가지고 있는지 결정하는 것은 많은 요인에 따라 달라지기 때문에 복잡한 문제입니다.

Windows 10 vs. Windows 11 성능 비교: 어느 것이 더 낫나요? 지속적인 기술 개발과 발전으로 운영 체제는 지속적으로 업데이트되고 업그레이드됩니다. 세계 최대 운영 체제 개발자 중 하나인 Microsoft의 Windows 운영 체제 시리즈는 항상 사용자로부터 많은 관심을 받아 왔습니다. 2021년에 Microsoft는 Windows 11 운영 체제를 출시하여 광범위한 논의와 관심을 불러일으켰습니다. 그렇다면 Windows 10과 Windows 11의 성능 차이는 무엇입니까?

Windows 운영 체제는 항상 개인용 컴퓨터에서 가장 널리 사용되는 운영 체제 중 하나였으며, Windows 10은 Microsoft가 새로운 Windows 11 시스템을 출시한 최근까지 오랫동안 Microsoft의 주력 운영 체제였습니다. Windows 11 시스템이 출시되면서 사람들은 Windows 10과 Windows 11 시스템 중 어느 것이 더 나은지에 관심을 가지게 되었습니다. 먼저 W부터 살펴보겠습니다.

Ollama는 Llama2, Mistral, Gemma와 같은 오픈 소스 모델을 로컬에서 쉽게 실행할 수 있는 매우 실용적인 도구입니다. 이번 글에서는 Ollama를 사용하여 텍스트를 벡터화하는 방법을 소개하겠습니다. Ollama를 로컬에 설치하지 않은 경우 이 문서를 읽을 수 있습니다. 이 기사에서는 nomic-embed-text[2] 모델을 사용합니다. 짧은 컨텍스트 및 긴 컨텍스트 작업에서 OpenAI text-embedding-ada-002 및 text-embedding-3-small보다 성능이 뛰어난 텍스트 인코더입니다. o를 성공적으로 설치한 후 nomic-embed-text 서비스를 시작하십시오.

다양한 Java 프레임워크의 성능 비교: REST API 요청 처리: Vert.x가 최고이며 요청 속도는 SpringBoot의 2배, Dropwizard의 3배입니다. 데이터베이스 쿼리: SpringBoot의 HibernateORM은 Vert.x 및 Dropwizard의 ORM보다 우수합니다. 캐싱 작업: Vert.x의 Hazelcast 클라이언트는 SpringBoot 및 Dropwizard의 캐싱 메커니즘보다 우수합니다. 적합한 프레임워크: 애플리케이션 요구 사항에 따라 선택하세요. Vert.x는 고성능 웹 서비스에 적합하고, SpringBoot는 데이터 집약적 애플리케이션에 적합하며, Dropwizard는 마이크로서비스 아키텍처에 적합합니다.

PHP 배열 키 값 뒤집기 방법의 성능 비교는 array_flip() 함수가 대규모 배열(100만 개 이상의 요소)에서 for 루프보다 더 나은 성능을 발휘하고 시간이 덜 걸리는 것을 보여줍니다. 키 값을 수동으로 뒤집는 for 루프 방식은 상대적으로 시간이 오래 걸립니다.

C++ 다중 스레드 성능을 최적화하기 위한 효과적인 기술에는 리소스 경합을 피하기 위해 스레드 수를 제한하는 것이 포함됩니다. 경합을 줄이려면 가벼운 뮤텍스 잠금을 사용하세요. 잠금 범위를 최적화하고 대기 시간을 최소화합니다. 동시성을 향상하려면 잠금 없는 데이터 구조를 사용하세요. 바쁜 대기를 피하고 이벤트를 통해 스레드에 리소스 가용성을 알립니다.

C++ 프로그램 성능에 대한 함수의 영향에는 함수 호출 오버헤드, 로컬 변수 및 객체 할당 오버헤드가 포함됩니다. 함수 호출 오버헤드: 스택 프레임 할당, 매개변수 전송 및 제어 전송을 포함하며 이는 작은 함수에 상당한 영향을 미칩니다. 지역 변수 및 개체 할당 오버헤드: 지역 변수 또는 개체 생성 및 소멸이 많으면 스택 오버플로 및 성능 저하가 발생할 수 있습니다.
