Spark on YARN
Spark在YARN中有yarn-cluster和yarn-client两种运行模式: I. Yarn Cluster Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,由该Application
Spark在YARN中有yarn-cluster和yarn-client两种运行模式:
I. Yarn Cluster
Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,由该ApplicationMaster管理全生命周期的应用。因为Driver程序在YARN中运行,所以事先不用启动Spark Master/Client,应用的运行结果不能在客户端显示(可以在history server中查看),所以最好将结果保存在HDFS而非stdout输出,客户端的终端显示的是作为YARN的job的简单运行状况。
by @Sandy Ryza
by 明风@taobao
从terminal的output中看到任务初始化更详细的四个步骤:
14/09/28 11:24:52 INFO RMProxy: Connecting to ResourceManager at hdp01/172.19.1.231:8032 14/09/28 11:24:52 INFO Client: Got Cluster metric info from ApplicationsManager (ASM), number of NodeManagers: 4 14/09/28 11:24:52 INFO Client: Queue info ... queueName: root.default, queueCurrentCapacity: 0.0, queueMaxCapacity: -1.0, queueApplicationCount = 0, queueChildQueueCount = 0 14/09/28 11:24:52 INFO Client: Max mem capabililty of a single resource in this cluster 8192 14/09/28 11:24:53 INFO Client: Uploading file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-examples_2.10-1.0.0-cdh5.1.0.jar 14/09/28 11:24:54 INFO Client: Uploading file:/usr/lib/spark/assembly/lib/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar 14/09/28 11:24:55 INFO Client: Setting up the launch environment 14/09/28 11:24:55 INFO Client: Setting up container launch context 14/09/28 11:24:55 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.master=\"spark://hdp01:7077\", -Dspark.app.name=\"org.apache.spark.examples.SparkPi\", -Dspark.eventLog.enabled=\"true\", -Dspark.eventLog.dir=\"/user/spark/applicationHistory\", -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ApplicationMaster, --class, org.apache.spark.examples.SparkPi, --jar , file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar, , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, /stdout, 2>, /stderr) 14/09/28 11:24:55 INFO Client: Submitting application to ASM 14/09/28 11:24:55 INFO YarnClientImpl: Submitted application application_1411874193696_0003 14/09/28 11:24:56 INFO Client: Application report from ASM: application identifier: application_1411874193696_0003 appId: 3 clientToAMToken: null appDiagnostics: appMasterHost: N/A appQueue: root.spark appMasterRpcPort: -1 appStartTime: 1411874695327 yarnAppState: ACCEPTED distributedFinalState: UNDEFINED appTrackingUrl: http://hdp01:8088/proxy/application_1411874193696_0003/ appUser: spark
1. 由client向ResourceManager提交请求,并上传jar到HDFS上
这期间包括四个步骤:
a). 连接到RM
b). 从RM ASM(ApplicationsManager )中获得metric、queue和resource等信息。
c). upload app jar and spark-assembly jar
d). 设置运行环境和container上下文(launch-container.sh等脚本)
2. ResouceManager向NodeManager申请资源,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationMaster)
3. NodeManager启动Spark App Master,并向ResourceManager AsM注册
4. Spark ApplicationMaster从HDFS中找到jar文件,启动DAGscheduler和YARN Cluster Scheduler
5. ResourceManager向ResourceManager AsM注册申请container资源(INFO YarnClientImpl: Submitted application)
6. ResourceManager通知NodeManager分配Container,这时可以收到来自ASM关于container的报告。(每个container的对应一个executor)
7. Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
需要注意的是:
a). Spark中的localdir会被yarn.nodemanager.local-dirs替换
b). 允许失败的节点数(spark.yarn.max.worker.failures)为executor数量的两倍数量,最小为3.
c). SPARK_YARN_USER_ENV传递给spark进程的环境变量
d). 传递给app的参数应该通过–args指定。
部署:
环境介绍:
hdp0[1-4]四台主机
hadoop使用CDH 5.1版本: hadoop-2.3.0+cdh5.1.0+795-1.cdh5.1.0.p0.58.el6.x86_64
直接下载对应2.3.0的pre-build版本http://spark.apache.org/downloads.html
下载完毕后解压,检查spark-assembly目录:
file /home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar
/home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar: Zip archive data, at least v2.0 to extract
然后输出环境变量HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR(可以设置到spark-env.sh中)
export HADOOP_CONF_DIR=/etc/hadoop/etc
export SPARK_JAR=/home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar
如果使用cloudera manager 5,在Spark Service的操作中可以找到Upload Spark Jar将spark-assembly上传到HDFS上。
Spark Jar Location (HDFS) spark_jar_hdfs_path |
/user/spark/share/lib/spark-assembly.jar 默认值 |
The location of the Spark jar in HDFS |
Spark History Location (HDFS) spark.eventLog.dir |
/user/spark/applicationHistory 默认值 |
The location of Spark application history logs in HDFS. Changing this value will not move existing logs to the new location. |
提交任务,此时在YARN的web UI和history Server上就可以看到运行状态信息。
spark-submit --class org.apache.spark.examples.SparkPi --master yarn-cluster /usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar
II. yarn-client
(YarnClientClusterScheduler)查看对应类的文件
在yarn-client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都 是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显 示,Driver以进程名为SparkSubmit的形式存在。
配置YARN-Client模式同样需要HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR变量。
提交任务测试:
spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client /usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar terminal output: 14/09/28 11:18:34 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.tachyonStore.folderName=\"spark-9287f0f2-2e72-4617-a418-e0198626829b\", -Dspark.eventLog.enabled=\"true\", -Dspark.yarn.secondary.jars=\"\", -Dspark.driver.host=\"hdp01\", -Dspark.driver.appUIHistoryAddress=\"\", -Dspark.app.name=\"Spark Pi\", -Dspark.jars=\"file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar\", -Dspark.fileserver.uri=\"http://172.19.17.231:53558\", -Dspark.eventLog.dir=\"/user/spark/applicationHistory\", -Dspark.master=\"yarn-client\", -Dspark.driver.port=\"35938\", -Dspark.httpBroadcast.uri=\"http://172.19.17.231:43804\", -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ExecutorLauncher, --class, notused, --jar , null, --args 'hdp01:35938' , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, /stdout, 2>, /stderr) 14/09/28 11:18:34 INFO Client: Submitting application to ASM 14/09/28 11:18:34 INFO YarnClientSchedulerBackend: Application report from ASM: appMasterRpcPort: -1 appStartTime: 1411874314198 yarnAppState: ACCEPTED ......
##最后将结果输出到terminal中
Pi is roughly 3.14528
^^
原文地址:Spark on YARN, 感谢原作者分享。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 기사에서는 세 가지 JavaScript 패키지 관리자(npm, Yarn, pnpm)를 소개하고, 이 세 가지 패키지 관리자를 비교하고, npm, Yarn 및 pnpm 간의 차이점과 관계에 대해 설명합니다. 모두에게 도움이 되기를 바랍니다. 도와주세요. 질문이 있으면 지적해 주세요!

Yarn도 npm과 마찬가지로 JavaScript 패키지 관리 도구입니다. 이번 글에서는 Yarn 패키지 관리 도구를 소개하겠습니다.

ChatGPT는 올해 반년 넘게 인기를 끌었고, 그 인기는 전혀 줄어들지 않았습니다. 딥러닝과 NLP도 모두의 관심을 끌었습니다. 회사의 몇몇 친구들이 자바 개발자인 나에게 인공지능을 어떻게 시작해야 하는지 묻는다. 이제 AI 학습을 위해 숨겨진 자바 라이브러리를 꺼내서 모두에게 소개할 차례다. 이러한 라이브러리와 프레임워크는 기계 학습, 딥 러닝, 자연어 처리 등을 위한 광범위한 도구와 알고리즘을 제공합니다. AI 프로젝트의 특정 요구 사항에 따라 가장 적합한 라이브러리 또는 프레임워크를 선택하고 다양한 알고리즘을 실험하여 AI 솔루션을 구축할 수 있습니다. 1.Deeplearning4j Java 및 Scala용 오픈소스 분산 딥러닝 라이브러리입니다. 딥러닝

빅데이터 시대가 도래하면서 데이터 처리의 중요성이 더욱 커지고 있습니다. 다양한 데이터 처리 작업을 위해 다양한 기술이 등장했습니다. 그 중 스파크(Spark)는 대규모 데이터 처리에 적합한 기술로 다양한 분야에서 널리 활용되고 있다. 또한 효율적인 프로그래밍 언어인 Go 언어도 최근 몇 년간 점점 더 많은 주목을 받고 있습니다. 이 기사에서는 Go 언어에서 Spark를 사용하여 효율적인 데이터 처리를 달성하는 방법을 살펴보겠습니다. 먼저 스파크의 기본 개념과 원리를 소개하겠습니다.

Java 빅데이터 기술 스택: Hadoop, Spark, Kafka 등 빅데이터 분야에서 Java의 응용을 이해합니다. 데이터의 양이 지속적으로 증가함에 따라 오늘날 인터넷 시대에 빅데이터 기술이 화두가 되고 있습니다. 빅데이터 분야에서 우리는 하둡(Hadoop), 스파크(Spark), 카프카(Kafka) 등의 기술 이름을 자주 듣습니다. 이러한 기술은 매우 중요한 역할을 하며, 널리 사용되는 프로그래밍 언어인 Java는 빅데이터 분야에서도 큰 역할을 합니다. 이 기사에서는 Java의 대규모 애플리케이션에 중점을 둘 것입니다.

PHP는 배우기 쉽고 오픈 소스이며 크로스 플랫폼이기 때문에 매우 인기 있는 서버 측 프로그래밍 언어입니다. 현재 많은 대기업에서는 PHP 언어를 사용하여 Facebook 및 WordPress와 같은 애플리케이션을 구축하고 있습니다. Spark는 웹 애플리케이션 구축을 위한 빠르고 가벼운 개발 프레임워크입니다. JVM(Java Virtual Machine)을 기반으로 하며 PHP와 함께 작동합니다. 이 기사에서는 PHP와 Spark를 사용하여 웹 애플리케이션을 구축하는 방법을 소개합니다. PHP란 무엇입니까? PH

React 설치 Yarn이 내부 명령이 아니라고 계속 보고하는 문제에 대한 해결책은 다음과 같습니다. 1. "pm uninstall Yarn -g" 명령을 통해 Yarn을 제거합니다. 2. "npm install Yarn"을 사용하여 Yarn을 다시 설치합니다. :\ WINDOWS\system32\node_modules\yarn\bin"; 4. cmd를 다시 열고 "yarn -v" 명령을 실행합니다.

데이터의 양이 지속적으로 증가함에 따라 대규모 데이터 처리는 기업이 직면하고 해결해야 할 문제가 되었습니다. 기존의 관계형 데이터베이스는 더 이상 이러한 요구를 충족할 수 없습니다. 대규모 데이터의 저장 및 분석을 위해서는 Hadoop, Spark 및 Flink와 같은 분산 컴퓨팅 플랫폼이 최선의 선택이 되었습니다. 데이터 처리 도구를 선택하는 과정에서 PHP는 개발 및 유지 관리가 쉬운 언어로 개발자들 사이에서 점점 인기를 얻고 있습니다. 이 기사에서는 대규모 데이터 처리에 PHP를 활용하는 방법과 방법을 살펴보겠습니다.
