목차
实验
安装数据库
导入示例数据
建立联合索引
查询
原理
关闭ICP
开启ICP
注意事项
参考
데이터 베이스 MySQL 튜토리얼 MySQL索引与Index Condition Pushdown

MySQL索引与Index Condition Pushdown

Jun 07, 2016 pm 04:39 PM
index mysql 색인

大约在两年前,我写了一篇关于MySQL索引的文章。最近有同学在文章的评论中对文章的内容提出质疑,质疑主要集中在联合索引的使用方式上。在那篇文章中,我说明联合索引是将各个索引字段做字符串连接后作为key,使用时将整体做前缀匹配。 而这名同学在这个页面

大约在两年前,我写了一篇关于MySQL索引的文章。最近有同学在文章的评论中对文章的内容提出质疑,质疑主要集中在联合索引的使用方式上。在那篇文章中,我说明联合索引是将各个索引字段做字符串连接后作为key,使用时将整体做前缀匹配。

而这名同学在这个页面找到了如下一句话:index condition pushdown is usually useful with multi-column indexes: the first component(s) is what index access is done for, the subsequent have columns that we read and check conditions on。从而认为联合索引的使用方式与文中不符。

实际上,这个页面所讲述的是在MariaDB 5.3.3(MySQL是在5.6)开始引入的一种叫做Index Condition Pushdown(以下简称ICP)的查询优化方式。由于本身不是一个层面的东西,前文中说的是Index Access,而这里是Query Optimization,所以并不构成对前文正确性的影响。在写前文时,MySQL还没有ICP,所以文中没有涉及相关内容,但考虑到新版本的MariaDB或MySQL中ICP的启用确实影响了一些查询行为的外在表现。所以决定写这篇文章详细讲述一下ICP的原理以及对索引使用方式的优化。

实验

先从一个简单的实验开始直观认识ICP的作用。

安装数据库

首先需要安装一个支持ICP的MariaDB或MySQL数据库。我使用的是MariaDB 5.5.34,如果是使用MySQL则需要5.6版本以上。

Mac环境下可以通过brew安装:

brew install mairadb
로그인 후 복사

其它环境下的安装请参考MariaDB官网关于下载安装的文档。

导入示例数据

与前文一样,我们使用Employees Sample Database,作为示例数据库。完整示例数据库的下载地址为:https://launchpad.net/test-db/employees-db-1/1.0.6/+download/employees_db-full-1.0.6.tar.bz2。

将下载的压缩包解压后,会看到一系列的文件,其中employees.sql就是导入数据的命令文件。执行

mysql -h[host] -u[user] -p 
<p>就可以完成建库、建表和load数据等一系列操作。此时数据库中会多一个叫做employees的数据库。库中的表如下:</p>
<pre class="brush:php;toolbar:false">MariaDB [employees]> SHOW TABLES;
+---------------------+
| Tables_in_employees |
+---------------------+
| departments         |
| dept_emp            |
| dept_manager        |
| employees           |
| salaries            |
| titles              |
+---------------------+
6 rows in set (0.00 sec)
로그인 후 복사

我们将使用employees表做实验。

建立联合索引

employees表包含雇员的基本信息,表结构如下:

MariaDB [employees]> DESC employees.employees;
+------------+---------------+------+-----+---------+-------+
| Field      | Type          | Null | Key | Default | Extra |
+------------+---------------+------+-----+---------+-------+
| emp_no     | int(11)       | NO   | PRI | NULL    |       |
| birth_date | date          | NO   |     | NULL    |       |
| first_name | varchar(14)   | NO   |     | NULL    |       |
| last_name  | varchar(16)   | NO   |     | NULL    |       |
| gender     | enum('M','F') | NO   |     | NULL    |       |
| hire_date  | date          | NO   |     | NULL    |       |
+------------+---------------+------+-----+---------+-------+
6 rows in set (0.01 sec)
로그인 후 복사

这个表默认只有一个主索引,因为ICP只能作用于二级索引,所以我们建立一个二级索引:

ALTER TABLE employees.employees ADD INDEX first_name_last_name (first_name, last_name);
로그인 후 복사

这样就建立了一个first_name和last_name的联合索引。

查询

为了明确看到查询性能,我们启用profiling并关闭query cache:

SET profiling = 1;
SET query_cache_type = 0;
SET GLOBAL query_cache_size = 0;
로그인 후 복사

然后我们看下面这个查询:

MariaDB [employees]> SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man';
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date  |
+--------+------------+------------+-----------+--------+------------+
| 254642 | 1959-01-17 | Mary       | Botman    | M      | 1989-11-24 |
| 471495 | 1960-09-24 | Mary       | Dymetman  | M      | 1988-06-09 |
| 211941 | 1962-08-11 | Mary       | Hofman    | M      | 1993-12-30 |
| 217707 | 1962-09-05 | Mary       | Lichtman  | F      | 1987-11-20 |
| 486361 | 1957-10-15 | Mary       | Oberman   | M      | 1988-09-06 |
| 457469 | 1959-07-15 | Mary       | Weedman   | M      | 1996-11-21 |
+--------+------------+------------+-----------+--------+------------+
로그인 후 복사

根据MySQL索引的前缀匹配原则,两者对索引的使用是一致的,即只有first_name采用索引,last_name由于使用了模糊前缀,没法使用索引进行匹配。我将查询联系执行三次,结果如下:

+----------+------------+---------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                     |
+----------+------------+---------------------------------------------------------------------------+
|       38 | 0.00084400 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' |
|       39 | 0.00071800 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' |
|       40 | 0.00089600 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' |
+----------+------------+---------------------------------------------------------------------------+
로그인 후 복사

然后我们关闭ICP:

SET optimizer_switch='index_condition_pushdown=off';
로그인 후 복사

在运行三次相同的查询,结果如下:

+----------+------------+---------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                     |
+----------+------------+---------------------------------------------------------------------------+
|       42 | 0.00264400 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' |
|       43 | 0.01418900 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' |
|       44 | 0.00234200 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' |
+----------+------------+---------------------------------------------------------------------------+
로그인 후 복사

有意思的事情发生了,关闭ICP后,同样的查询,耗时是之前的三倍以上。下面我们用explain看看两者有什么区别:

MariaDB [employees]> EXPLAIN SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man';
+------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+
| id   | select_type | table     | type | possible_keys        | key                  | key_len | ref   | rows | Extra                 |
+------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+
|    1 | SIMPLE      | employees | ref  | first_name_last_name | first_name_last_name | 44      | const |  224 | Using index condition |
+------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+
1 row in set (0.00 sec)
로그인 후 복사
MariaDB [employees]> EXPLAIN SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man';
+------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+
| id   | select_type | table     | type | possible_keys        | key                  | key_len | ref   | rows | Extra       |
+------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+
|    1 | SIMPLE      | employees | ref  | first_name_last_name | first_name_last_name | 44      | const |  224 | Using where |
+------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+
1 row in set (0.00 sec)
로그인 후 복사

前者是开启ICP,后者是关闭ICP。可以看到区别在于Extra,开启ICP时,用的是Using index condition;关闭ICP时,是Using where。

其中Using index condition就是ICP提高查询性能的关键。下一节说明ICP提高查询性能的原理。

原理

ICP的原理简单说来就是将可以利用索引筛选的where条件在存储引擎一侧进行筛选,而不是将所有index access的结果取出放在server端进行where筛选。

以上面的查询为例,在没有ICP时,首先通过索引前缀从存储引擎中读出224条first_name为Mary的记录,然后在server段用where筛选last_name的like条件;而启用ICP后,由于last_name的like筛选可以通过索引字段进行,那么存储引擎内部通过索引与where条件的对比来筛选掉不符合where条件的记录,这个过程不需要读出整条记录,同时只返回给server筛选后的6条记录,因此提高了查询性能。

下面通过图两种查询的原理详细解释。

关闭ICP

在不支持ICP的系统下,索引仅仅作为data access使用。

开启ICP

在ICP优化开启时,在存储引擎端首先用索引过滤可以过滤的where条件,然后再用索引做data access,被index condition过滤掉的数据不必读取,也不会返回server端。

注意事项

有几个关于ICP的事情要注意:

  • ICP只能用于二级索引,不能用于主索引。
  • 也不是全部where条件都可以用ICP筛选,如果某where条件的字段不在索引中,当然还是要读取整条记录做筛选,在这种情况下,仍然要到server端做where筛选。
  • ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例。

参考

[1] https://mariadb.com/kb/en/index-condition-pushdown/

[2] http://dev.mysql.com/doc/refman/5.6/en/index-condition-pushdown-optimization.html

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

phpmyadmin을 여는 방법 phpmyadmin을 여는 방법 Apr 10, 2025 pm 10:51 PM

다음 단계를 통해 phpmyadmin을 열 수 있습니다. 1. 웹 사이트 제어판에 로그인; 2. phpmyadmin 아이콘을 찾고 클릭하십시오. 3. MySQL 자격 증명을 입력하십시오. 4. "로그인"을 클릭하십시오.

MySQL : 세계에서 가장 인기있는 데이터베이스 소개 MySQL : 세계에서 가장 인기있는 데이터베이스 소개 Apr 12, 2025 am 12:18 AM

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

단일 스레드 레 디스를 사용하는 방법 단일 스레드 레 디스를 사용하는 방법 Apr 10, 2025 pm 07:12 PM

Redis는 단일 스레드 아키텍처를 사용하여 고성능, 단순성 및 일관성을 제공합니다. 동시성을 향상시키기 위해 I/O 멀티플렉싱, 이벤트 루프, 비 블로킹 I/O 및 공유 메모리를 사용하지만 동시성 제한 제한, 단일 고장 지점 및 쓰기 집약적 인 워크로드에 부적합한 제한이 있습니다.

MySQL의 장소 : 데이터베이스 및 프로그래밍 MySQL의 장소 : 데이터베이스 및 프로그래밍 Apr 13, 2025 am 12:18 AM

데이터베이스 및 프로그래밍에서 MySQL의 위치는 매우 중요합니다. 다양한 응용 프로그램 시나리오에서 널리 사용되는 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) MySQL은 웹, 모바일 및 엔터프라이즈 레벨 시스템을 지원하는 효율적인 데이터 저장, 조직 및 검색 기능을 제공합니다. 2) 클라이언트 서버 아키텍처를 사용하고 여러 스토리지 엔진 및 인덱스 최적화를 지원합니다. 3) 기본 사용에는 테이블 작성 및 데이터 삽입이 포함되며 고급 사용에는 다중 테이블 조인 및 복잡한 쿼리가 포함됩니다. 4) SQL 구문 오류 및 성능 문제와 같은 자주 묻는 질문은 설명 명령 및 느린 쿼리 로그를 통해 디버깅 할 수 있습니다. 5) 성능 최적화 방법에는 인덱스의 합리적인 사용, 최적화 된 쿼리 및 캐시 사용이 포함됩니다. 모범 사례에는 거래 사용 및 준비된 체계가 포함됩니다

MySQL을 사용하는 이유는 무엇입니까? 혜택과 장점 MySQL을 사용하는 이유는 무엇입니까? 혜택과 장점 Apr 12, 2025 am 12:17 AM

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

Apache의 데이터베이스에 연결하는 방법 Apache의 데이터베이스에 연결하는 방법 Apr 13, 2025 pm 01:03 PM

Apache는 데이터베이스에 연결하여 다음 단계가 필요합니다. 데이터베이스 드라이버 설치. 연결 풀을 만들려면 Web.xml 파일을 구성하십시오. JDBC 데이터 소스를 작성하고 연결 설정을 지정하십시오. JDBC API를 사용하여 Connections, 명세서 작성, 매개 변수 바인딩, 쿼리 또는 업데이트 실행 및 처리를 포함하여 Java 코드의 데이터베이스에 액세스하십시오.

Redis Exporter 서비스로 Redis 액 적을 모니터링하십시오 Redis Exporter 서비스로 Redis 액 적을 모니터링하십시오 Apr 10, 2025 pm 01:36 PM

Redis 데이터베이스의 효과적인 모니터링은 최적의 성능을 유지하고 잠재적 인 병목 현상을 식별하며 전반적인 시스템 신뢰성을 보장하는 데 중요합니다. Redis Exporter Service는 Prometheus를 사용하여 Redis 데이터베이스를 모니터링하도록 설계된 강력한 유틸리티입니다. 이 튜토리얼은 Redis Exporter Service의 전체 설정 및 구성을 안내하여 모니터링 솔루션을 원활하게 구축 할 수 있도록합니다. 이 자습서를 연구하면 완전히 작동하는 모니터링 설정을 달성 할 수 있습니다.

Docker의 MySQL을 시작하는 방법 Docker의 MySQL을 시작하는 방법 Apr 15, 2025 pm 12:09 PM

Docker에서 MySQL을 시작하는 프로세스는 다음 단계로 구성됩니다. MySQL 이미지를 가져와 컨테이너를 작성하고 시작하고 루트 사용자 암호를 설정하고 포트 확인 연결을 매핑하고 데이터베이스를 작성하고 사용자는 데이터베이스에 모든 권한을 부여합니다.

See all articles