데이터 베이스 MySQL 튜토리얼 Redis latency spikes and the Linux kernel: a few m

Redis latency spikes and the Linux kernel: a few m

Jun 07, 2016 pm 04:41 PM
and l redis the

Today I was testing Redis latency using m3.medium EC2 instances. I was able to replicate the usual latency spikes during BGSAVE, when the process forks, and the child starts saving the dataset on disk. However something was not as expected

Today I was testing Redis latency using m3.medium EC2 instances. I was able to replicate the usual latency spikes during BGSAVE, when the process forks, and the child starts saving the dataset on disk. However something was not as expected. The spike did not happened because of disk I/O, nor during the fork() call itself.

The test was performed with a 1GB of data in memory, with 150k writes per second originating from a different EC2 instance, targeting 5 million keys (evenly distributed). The pipeline was set to 4 commands. This translates to the following command line of redis-benchmark:

./redis-benchmark -P 4 -t set -r 5000000 -n 1000000000

Every time BGSAVE was triggered, I could see ~300 milliseconds latency spikes of unknown origin, since fork was taking 6 milliseconds. Fortunately Redis has a software watchdog feature, that is able to produce a stack trace of the process during a latency event. It’s quite a simple trick but works great: we setup a SIGALRM to be delivered by the kernel. Each time the serverCron() function is called, the scheduled signal is cleared, so actually Redis never receives it if the control returns fast enough to the Redis process. If instead there is a blocking condition, the signal is delivered by the kernel, and the signal handler prints the stack trace.

Instead of getting stack traces with the fork call, the process was always blocked near MOV* operations happening in the context of the parent process just after the fork. I started to develop the theory that Linux was “lazy forking” in some way, and the actual heavy stuff was happening later when memory was accessed and pages had to be copy-on-write-ed.

Next step was to read the fork() implementation of the Linux kernel. What the system call does is indeed to copy all the mapped regions (vm_area_struct structures). However a traditional implementation would also duplicate the PTEs at this point, and this was traditionally performed by copy_page_range(). However something changed… as an optimization years ago: now Linux does not just performs lazy page copying, as most modern kernels. The PTEs are also copied in a lazy way on faults. Here is the top comment of copy_range_range():

* Don't copy ptes where a page fault will fill them correctly.
* Fork becomes much lighter when there are big shared or private
* readonly mappings. The tradeoff is that copy_page_range is more
* efficient than faulting.

Basically as soon as the parent process performs an access in the shared regions with the child process, during the page fault Linux does the big amount of work skipped by fork, and this is why I could see always a MOV instruction in the stack trace.

While this behavior is not good for Redis, since to copy all the PTEs in a single operation is more efficient, it is much better for the traditional use case of fork() on POSIX systems, which is, fork()+exec*() in order to spawn a new process.

This issue is not EC2 specific, however virtualized instances are slower at copying PTEs, so the problem is less noticeable with physical servers.

However this is definitely not the full story. While I was testing this stuff in my Linux box, I remembered that using the libc malloc, instead of jemalloc, in certain conditions I was able to measure less latency spikes in the past. So I tried to check if there was some relation with that.

Indeed compiling with MALLOC=libc I was not able to measure any latency in the physical server, while with jemalloc I could observe the same behavior observed with the EC2 instance. To understand better the difference I setup a test with 15 million keys and a larger pipeline in order to stress more the system and make more likely that page faults of all the mmaped regions could happen in a very small interval of time. Then I repeated the same test with jemalloc and libc malloc:

bare metal, 675k/sec writes to 15 million keys, jemalloc: max spike 339 milliseconds.
bare metal, 675k/sec writes to 15 million keys, malloc: max spike 21 milliseconds.

I quickly tried to replicate the same result with EC2, same stuff, the spike was a fraction with malloc.

The next logical thing after this findings is to inspect what is the difference in the memory layout of a Redis system running with libc malloc VS one running with jemalloc. The Linux proc filesystem is handy to investigate the process internals (in this case I used /proc//smaps file).

Jemalloc memory is allocated in this region:

7f8002c00000-7f8062400000 rw-p 00000000 00:00 0
Size: 1564672 kB
Rss: 1564672 kB
Pss: 1564672 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 1564672 kB
Referenced: 1564672 kB
Anonymous: 1564672 kB
AnonHugePages: 1564672 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
VmFlags: rd wr mr mw me ac sd

While libc big region looks like this:

0082f000-8141c000 rw-p 00000000 00:00 0 [heap]
Size: 2109364 kB
Rss: 2109276 kB
Pss: 2109276 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 2109276 kB
Referenced: 2109276 kB
Anonymous: 2109276 kB
AnonHugePages: 0 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
VmFlags: rd wr mr mw me ac sd

Looks like here there are a couple different things.

1) There is [heap] in the first line only for libc malloc.
2) AnonHugePages field is zero for libc malloc but is set to the size of the region in the case of jemalloc.


Basically, the difference in latency appears to be due to the fact that malloc is using transparent huge pages, a kernel feature that allows to transparently glue multiple normal 4k pages into a few huge pages, which are 2048k each. This in turn means that copying the PTEs for this regions is much faster.


EDIT: Unfortunately I just spotted that I'm totally wrong, the huge pages apparently are only used by jemalloc: I just mis-read the outputs since this seemed so obvious. So on the contrary, it appears that the high latency is due to the huge pages thing for some unknown reason. So actually it is malloc that, while NOT using huge pages, is going much faster. I've no idea about what is happening here, so please disregard the above conclusions.


Meanwhile for low latency applications you may want to build Redis with “make MALLOC=libc”, however make sure to use “make distclean” before, and be aware that depending on the work load, libc malloc suffers fragmentation more than jemalloc.


More news soon…

EDIT2: Oh wait... since the problem is huge pages, this is MUCH better, since we can disable it. And I just verified that it works:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

This is the new Redis mantra apparently.

UPDATE: While this seemed unrealistic to me, I experimentally verified that the huge pages memory spike is due to the fact that with 50 clients writing at the same time, with N queued requests each, the Redis process can touch in the space of *a single event loop iteration* all the process pages, so its copy-on-writing the entire process address space. This means that not only huge pages are horrible for latency, but that are also horrible for memory usage. Comments
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Redis 클러스터 모드를 구축하는 방법 Redis 클러스터 모드를 구축하는 방법 Apr 10, 2025 pm 10:15 PM

Redis Cluster Mode는 Sharding을 통해 Redis 인스턴스를 여러 서버에 배포하여 확장 성 및 가용성을 향상시킵니다. 시공 단계는 다음과 같습니다. 포트가 다른 홀수 redis 인스턴스를 만듭니다. 3 개의 센티넬 인스턴스를 만들고, Redis 인스턴스 및 장애 조치를 모니터링합니다. Sentinel 구성 파일 구성, Redis 인스턴스 정보 및 장애 조치 설정 모니터링 추가; Redis 인스턴스 구성 파일 구성, 클러스터 모드 활성화 및 클러스터 정보 파일 경로를 지정합니다. 각 redis 인스턴스의 정보를 포함하는 Nodes.conf 파일을 작성합니다. 클러스터를 시작하고 Create 명령을 실행하여 클러스터를 작성하고 복제본 수를 지정하십시오. 클러스터에 로그인하여 클러스터 정보 명령을 실행하여 클러스터 상태를 확인하십시오. 만들다

기본 Redis를 구현하는 방법 기본 Redis를 구현하는 방법 Apr 10, 2025 pm 07:21 PM

Redis는 해시 테이블을 사용하여 데이터를 저장하고 문자열, 목록, 해시 테이블, 컬렉션 및 주문한 컬렉션과 같은 데이터 구조를 지원합니다. Redis는 Snapshots (RDB)를 통해 데이터를 유지하고 WRITE 전용 (AOF) 메커니즘을 추가합니다. Redis는 마스터 슬레이브 복제를 사용하여 데이터 가용성을 향상시킵니다. Redis는 단일 스레드 이벤트 루프를 사용하여 연결 및 명령을 처리하여 데이터 원자력과 일관성을 보장합니다. Redis는 키의 만료 시간을 설정하고 게으른 삭제 메커니즘을 사용하여 만료 키를 삭제합니다.

Redis-Server를 찾을 수없는 경우해야 할 일 Redis-Server를 찾을 수없는 경우해야 할 일 Apr 10, 2025 pm 06:54 PM

Redis-Server가 찾을 수없는 문제를 해결하기위한 단계 : Redis가 올바르게 설치되어 있는지 확인하십시오. 환경 변수를 설정 redis_host 및 redis_port; Redis Server Redis-Server를 시작하십시오. 서버가 Redis-Cli Ping을 실행 중인지 확인하십시오.

Redis에서 모든 키를 보는 방법 Redis에서 모든 키를 보는 방법 Apr 10, 2025 pm 07:15 PM

Redis에서 모든 키를 보려면 세 가지 방법이 있습니다. 키 명령을 사용하여 지정된 패턴과 일치하는 모든 키를 반환하십시오. 스캔 명령을 사용하여 키를 반복하고 키 세트를 반환하십시오. 정보 명령을 사용하여 총 키 수를 얻으십시오.

Redis의 소스 코드를 읽는 방법 Redis의 소스 코드를 읽는 방법 Apr 10, 2025 pm 08:27 PM

Redis 소스 코드를 이해하는 가장 좋은 방법은 단계별로 이동하는 것입니다. Redis의 기본 사항에 익숙해집니다. 특정 모듈을 선택하거나 시작점으로 기능합니다. 모듈 또는 함수의 진입 점으로 시작하여 코드를 한 줄씩 봅니다. 함수 호출 체인을 통해 코드를 봅니다. Redis가 사용하는 기본 데이터 구조에 익숙해 지십시오. Redis가 사용하는 알고리즘을 식별하십시오.

Redis 명령을 사용하는 방법 Redis 명령을 사용하는 방법 Apr 10, 2025 pm 08:45 PM

Redis 지시 사항을 사용하려면 다음 단계가 필요합니다. Redis 클라이언트를 엽니 다. 명령 (동사 키 값)을 입력하십시오. 필요한 매개 변수를 제공합니다 (명령어마다 다름). 명령을 실행하려면 Enter를 누르십시오. Redis는 작업 결과를 나타내는 응답을 반환합니다 (일반적으로 OK 또는 -err).

Redis 대기열을 읽는 방법 Redis 대기열을 읽는 방법 Apr 10, 2025 pm 10:12 PM

Redis의 대기열을 읽으려면 대기열 이름을 얻고 LPOP 명령을 사용하여 요소를 읽고 빈 큐를 처리해야합니다. 특정 단계는 다음과 같습니다. 대기열 이름 가져 오기 : "큐 :"와 같은 "대기열 : my-queue"의 접두사로 이름을 지정하십시오. LPOP 명령을 사용하십시오. 빈 대기열 처리 : 대기열이 비어 있으면 LPOP이 NIL을 반환하고 요소를 읽기 전에 대기열이 존재하는지 확인할 수 있습니다.

Redis Lock을 사용하는 방법 Redis Lock을 사용하는 방법 Apr 10, 2025 pm 08:39 PM

Redis를 사용하여 잠금 작업을 사용하려면 SetNX 명령을 통해 잠금을 얻은 다음 만료 명령을 사용하여 만료 시간을 설정해야합니다. 특정 단계는 다음과 같습니다. (1) SETNX 명령을 사용하여 키 값 쌍을 설정하십시오. (2) 만료 명령을 사용하여 잠금의 만료 시간을 설정하십시오. (3) DEL 명령을 사용하여 잠금이 더 이상 필요하지 않은 경우 잠금을 삭제하십시오.

See all articles