Oracle Redo Log 机制 小结
Oracle 的Redo 机制DB的一个重要机制,理解这个机制对DBA来说也是非常重要,之前的Blog里也林林散散的写了一些,前些日子看老白日
Oracle 的Redo 机制DB的一个重要机制,理解这个机制对DBA来说也是非常重要,之前的Blog里也林林散散的写了一些,前些日子看老白日记里也有说明,所以结合老白日记里的内容,对oracle 的整个Redo log 机制重新整理一下。
一.Redo log 说明
Oracle 的Online redo log 是为确保已经提交的事务不会丢失而建立的一个机制。 因为这种健全的机制,才能让我们在数据库crash时,恢复数据,保证数据不丢失。
1.1 恢复分类
恢复分两种:
(1) Crash recovery
(2) Media recovery
这两种的具体说明,参考:
Oracle 实例恢复时 前滚(roll forward) 后滚(rollback) 问题
这两种的区别是:
(1) Crash Recovery 是在启动时DB 自动完成,而MediaRecovery 需要DBA 手工的完成。
(2) Crash Recovery 使用online redo log,Media Recovery 使用archived log 和 online redo log。
(3) Media Recovery 可能还需要从备份中Restore datafile。
1.2 Crash Recovery 过程
当数据库突然崩溃,而还没有来得及将buffer cache里的脏数据块刷新到数据文件里,同时在实例崩溃时正在运行着的事务被突然中断,则事务为中间状态,也就是既没有提交也没有回滚。这时数据文件里的内容不能体现实例崩溃时的状态。这样关闭的数据库是不一致的。
下次启动实例时,Oracle会由SMON进程自动进行实例恢复。实例启动时,SMON进程会去检查控制文件中所记录的、每个在线的、可读写的数据文件的END SCN号。
数据库正常运行过程中,该END SCN号始终为NULL,而当数据库正常关闭时,会进行完全检查点,并将检查点SCN号更新该字段。
而崩溃时,Oracle还来不及更新该字段,则该字段仍然为NULL。当SMON进程发现该字段为空时,就知道实例在上次没有正常关闭,于是由SMON进程就开始进行实例恢复了。
1.2.1 前滚
SMON进程进行实例恢复时,会从控制文件中获得检查点位置。于是,SMON进程到联机日志文件中,找到该检查点位置,然后从该检查点位置开始往下,应用所有的重做条目,从而在buffer cache里又恢复了实例崩溃那个时间点的状态。这个过程叫做前滚,前滚完毕以后,buffer cache里既有崩溃时已经提交还没有写入数据文件脏数据块,也还有事务被突然终止,而导致的既没有提交又没有回滚的事务所弄脏的数据块。
1.2.2 回滚
前滚一旦完毕,SMON进程立即打开数据库。但是,这时的数据库中还含有那些中间状态的、既没有提交又没有回滚的脏块,这种脏块是不能存在于数据库中的,因为它们并没有被提交,必须被回滚。打开数据库以后,SMON进程会在后台进行回滚。
有时,数据库打开以后,SMON进程还没来得及回滚这些中间状态的数据块时,就有用户进程发出读取这些数据块的请求。这时,服务器进程在将这些块返回给用户之前,由服务器进程负责进行回滚,回滚完毕后,将数据块的内容返回给用户。
总之,Crash Recovery时,数据库打开会占用比正常关闭更长的时间。
1.2.3 必须先前滚,在回滚
回滚段实际上也是以回滚表空间的形式存在的,既然是表空间,那么肯定就有对应的数据文件,同时在buffer cache 中就会存在映像块,这一点和其他表空间的数据文件相同。
当发生DML操作时,既要生成REDO(针对DML操作本身的REDO Entry)也要生成UNDO(用于回滚该DML操作,记录在UNDO表空间中),但是既然UNDO信息也是使用回滚表空间来存放的,那么该DML操作对应的UNDO信息(在BUFFER CACHE生成对应中的UNDO BLOCK)就会首先生成其对应的REDO信息(UNDO BLOCK's REDO Entry)并写入Log Buffer中。
这样做的原因是因为Buffer Cache中的有关UNDO表空间的块也可能因为数据库故障而丢失,为了保障在下一次启动时能够顺利进行回滚,首先就必须使用REDO日志来恢复UNDO段(实际上是先回复Buffer Cache中的脏数据块,然后由Checkpoint写入UNDO段中),在数据库OPEN以后再使用UNDO信息来进行回滚,达到一致性的目的。
生成完UNDO BLOCK's REDO Entry后才轮到该DML语句对应的REDO Entry,,最后再修改Buffer Cache中的Block,该Block同时变为脏数据块。
实际上,简单点说REDO的作用就是记录所有的数据库更改,包括UNDO表空间在内。
1.2.4 Crash Recovery 再细分
Crash Recovery 可以在细分成两种:
(1) 实例恢复(InstanceRecovery)
(2) 崩溃恢复(CrashRecovery)
InstanceRecovery与CrashRecovery是存在区别的:针对单实例(singleinstance)或者RAC中所有节点全部崩溃后的恢复,我们称之为Crash Recovery。 而对于RAC中的某一个节点失败,存活节点(surviving instance)试图对失败节点线程上redo做应用的情况,我们称之为InstanceRecovery。
不管是Instance Recovery还是Crash Recovery,都由2个部分组成:cache recovery和transaction recovery。
根据官方文档的介绍,Cache Recovery也叫Rolling Forward(前滚);而Transaction Recovery也叫Rolling Back(回滚)。
1.3 Redo log 说明
REDO LOG 的数据是按照THREAD 来组织的,对于单实例系统来说,只有一个THREAD,对于RAC 系统来说,可能存在多个THREAD,每个数据库实例拥有一组独立的REDO LOG 文件,拥有独立的LOG BUFFER,某个实例的变化会被独立的记录到一个THREAD 的REDO LOG 文件中。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











전체 테이블 스캔은 MySQL에서 인덱스를 사용하는 것보다 빠를 수 있습니다. 특정 사례는 다음과 같습니다. 1) 데이터 볼륨은 작습니다. 2) 쿼리가 많은 양의 데이터를 반환 할 때; 3) 인덱스 열이 매우 선택적이지 않은 경우; 4) 복잡한 쿼리시. 쿼리 계획을 분석하고 인덱스 최적화, 과도한 인덱스를 피하고 정기적으로 테이블을 유지 관리하면 실제 응용 프로그램에서 최상의 선택을 할 수 있습니다.

InnoDB의 전체 텍스트 검색 기능은 매우 강력하여 데이터베이스 쿼리 효율성과 대량의 텍스트 데이터를 처리 할 수있는 능력을 크게 향상시킬 수 있습니다. 1) InnoDB는 기본 및 고급 검색 쿼리를 지원하는 역 색인화를 통해 전체 텍스트 검색을 구현합니다. 2) 매치 및 키워드를 사용하여 검색, 부울 모드 및 문구 검색을 지원합니다. 3) 최적화 방법에는 워드 세분화 기술 사용, 인덱스의 주기적 재건 및 캐시 크기 조정, 성능과 정확도를 향상시키는 것이 포함됩니다.

예, MySQL은 Windows 7에 설치 될 수 있으며 Microsoft는 Windows 7 지원을 중단했지만 MySQL은 여전히 호환됩니다. 그러나 설치 프로세스 중에 다음 지점이 표시되어야합니다. Windows 용 MySQL 설치 프로그램을 다운로드하십시오. MySQL의 적절한 버전 (커뮤니티 또는 기업)을 선택하십시오. 설치 프로세스 중에 적절한 설치 디렉토리 및 문자를 선택하십시오. 루트 사용자 비밀번호를 설정하고 올바르게 유지하십시오. 테스트를 위해 데이터베이스에 연결하십시오. Windows 7의 호환성 및 보안 문제에 주목하고 지원되는 운영 체제로 업그레이드하는 것이 좋습니다.

클러스터 인덱스와 비 클러스터 인덱스의 차이점은 1. 클러스터 된 인덱스는 인덱스 구조에 데이터 행을 저장하며, 이는 기본 키 및 범위별로 쿼리에 적합합니다. 2. 클러스터되지 않은 인덱스는 인덱스 키 값과 포인터를 데이터 행으로 저장하며 비 예산 키 열 쿼리에 적합합니다.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) 데이터베이스 및 테이블 작성 : CreateAbase 및 CreateTable 명령을 사용하십시오. 2) 기본 작업 : 삽입, 업데이트, 삭제 및 선택. 3) 고급 운영 : 가입, 하위 쿼리 및 거래 처리. 4) 디버깅 기술 : 확인, 데이터 유형 및 권한을 확인하십시오. 5) 최적화 제안 : 인덱스 사용, 선택을 피하고 거래를 사용하십시오.

MySQL은 B-Tree, Hash, Full-Text 및 Spatial의 4 가지 인덱스 유형을 지원합니다. 1.B- 트리 색인은 동일한 값 검색, 범위 쿼리 및 정렬에 적합합니다. 2. 해시 인덱스는 동일한 값 검색에 적합하지만 범위 쿼리 및 정렬을 지원하지 않습니다. 3. 전체 텍스트 색인은 전체 텍스트 검색에 사용되며 다량의 텍스트 데이터를 처리하는 데 적합합니다. 4. 공간 지수는 지리 공간 데이터 쿼리에 사용되며 GIS 응용 프로그램에 적합합니다.

MySQL 데이터베이스에서 사용자와 데이터베이스 간의 관계는 권한과 테이블로 정의됩니다. 사용자는 데이터베이스에 액세스 할 수있는 사용자 이름과 비밀번호가 있습니다. 권한은 보조금 명령을 통해 부여되며 테이블은 Create Table 명령에 의해 생성됩니다. 사용자와 데이터베이스 간의 관계를 설정하려면 데이터베이스를 작성하고 사용자를 생성 한 다음 권한을 부여해야합니다.

MySQL 및 MariaDB는 공존 할 수 있지만주의해서 구성해야합니다. 열쇠는 각 데이터베이스에 다른 포트 번호와 데이터 디렉토리를 할당하고 메모리 할당 및 캐시 크기와 같은 매개 변수를 조정하는 것입니다. 연결 풀링, 애플리케이션 구성 및 버전 차이도 고려해야하며 함정을 피하기 위해 신중하게 테스트하고 계획해야합니다. 두 개의 데이터베이스를 동시에 실행하면 리소스가 제한되는 상황에서 성능 문제가 발생할 수 있습니다.
