데이터 베이스 MySQL 튜토리얼 控制Hive MAP个数详解

控制Hive MAP个数详解

Jun 07, 2016 pm 05:33 PM
or 데이터 베이스

Hive的MAP数或者说MAPREDUCE的MAP数是由谁来决定的呢?inputsplit size,那么对于每一个inputsplit size是如何计算出来的,这是做

Hive的MAP数或者说MAPREDUCE的MAP数是由谁来决定的呢?inputsplit size,那么对于每一个inputsplit size是如何计算出来的,这是做MAP数调整的关键.
Hadoop给出了Inputformat接口用于描述输入数据的格式,,其中一个关键的方法就是getSplits,对输入的数据进行分片.
Hive对InputFormat进行了封装:

而具体采用的实现是由参数hive.input.format来决定的,主要使用2中类型HiveInputFormat和CombineHiveInputFormat.
对于HiveInputFormat来说:


 public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
    //扫描每一个分区
    for (Path dir : dirs) {
      PartitionDesc part = getPartitionDescFromPath(pathToPartitionInfo, dir);
    //获取分区的输入格式
      Class inputFormatClass = part.getInputFileFormatClass();
      InputFormat inputFormat = getInputFormatFromCache(inputFormatClass, job);
    //按照相应格式的分片算法获取分片
    //注意:这里的Inputformat只是old version API:org.apache.hadoop.mapred而不是org.apache.hadoop.mapreduce,因此不能采用新的API,否则在查询时会报异常:Input format must implement InputFormat.区别就是新的API的计算inputsplit size(Math.max(minSize, Math.min(maxSize, blockSize))和老的(Math.max(minSize, Math.min(goalSize, blockSize)))不一样;
      InputSplit[] iss = inputFormat.getSplits(newjob, numSplits / dirs.length);
      for (InputSplit is : iss) {
    //封装结果,返回
        result.add(new HiveInputSplit(is, inputFormatClass.getName()));
      }
    }
    return result.toArray(new HiveInputSplit[result.size()]);
}

 

对于CombineHiveInputFormat来说的计算就比较复杂了:


 public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
    //加载CombineFileInputFormatShim,这个类继承了org.apache.hadoop.mapred.lib.CombineFileInputFormat
    CombineFileInputFormatShim combine = ShimLoader.getHadoopShims()
        .getCombineFileInputFormat();
if (combine == null) {
//若为空则采用HiveInputFormat的方式,下同
      return super.getSplits(job, numSplits);
    }
    Path[] paths = combine.getInputPathsShim(job);
for (Path path : paths) {
//若是外部表,则按照HiveInputFormat方式分片
      if ((tableDesc != null) && tableDesc.isNonNative()) {
        return super.getSplits(job, numSplits);
      }
      Class inputFormatClass = part.getInputFileFormatClass();
      String inputFormatClassName = inputFormatClass.getName();
      InputFormat inputFormat = getInputFormatFromCache(inputFormatClass, job);
      if (this.mrwork != null && !this.mrwork.getHadoopSupportsSplittable()) {
        if (inputFormat instanceof TextInputFormat) {
        if ((new CompressionCodecFactory(job)).getCodec(path) != null)
//在未开启hive.hadoop.supports.splittable.combineinputformat(MAPREDUCE-1597)参数情况下,对于TextInputFormat并且为压缩则采用HiveInputFormat分片算法
                    return super.getSplits(job, numSplits);
        }
      }
    //对于连接式同上
      if (inputFormat instanceof SymlinkTextInputFormat) {
        return super.getSplits(job, numSplits);
      }
      CombineFilter f = null;
      boolean done = false;
Path filterPath = path;
//由参数hive.mapper.cannot.span.multiple.partitions控制,默认false;如果没true,则对每一个partition创建一个pool,以下省略为true的处理;对于同一个表的同一个文件格式的split创建一个pool为combine做准备;
      if (!mrwork.isMapperCannotSpanPartns()) {
        opList = HiveFileFormatUtils.doGetWorksFromPath(
                  pathToAliases, aliasToWork, filterPath);
        f = poolMap.get(new CombinePathInputFormat(opList, inputFormatClassName));
      }
      if (!done) {
        if (f == null) {
          f = new CombineFilter(filterPath);
          combine.createPool(job, f);
        } else {
          f.addPath(filterPath);
        }
      }
    }
if (!mrwork.isMapperCannotSpanPartns()) {
//到这里才调用combine的分片算法,继承了org.apache.hadoop.mapred.lib.CombineFileInputFormat extends 新版本CombineFileInputformat
      iss = Arrays.asList(combine.getSplits(job, 1));
}
//对于sample查询特殊处理
    if (mrwork.getNameToSplitSample() != null && !mrwork.getNameToSplitSample().isEmpty()) {
      iss = sampleSplits(iss);
}
//封装结果返回
    for (InputSplitShim is : iss) {
      CombineHiveInputSplit csplit = new CombineHiveInputSplit(job, is);
      result.add(csplit);
    }
    return result.toArray(new CombineHiveInputSplit[result.size()]);
  }

更多详情见请继续阅读下一页的精彩内容

Hive 的详细介绍:请点这里
Hive 的下载地址:请点这里

相关阅读:

基于Hadoop集群的Hive安装

Hive内表和外表的区别

Hadoop + Hive + Map +reduce 集群安装部署

Hive本地独立模式安装

Hive学习之WordCount单词统计

linux

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Go 언어는 데이터베이스의 추가, 삭제, 수정 및 쿼리 작업을 어떻게 구현합니까? Go 언어는 데이터베이스의 추가, 삭제, 수정 및 쿼리 작업을 어떻게 구현합니까? Mar 27, 2024 pm 09:39 PM

Go 언어는 효율적이고 간결하며 배우기 쉬운 프로그래밍 언어입니다. 동시 프로그래밍과 네트워크 프로그래밍의 장점 때문에 개발자들이 선호합니다. 실제 개발에서 데이터베이스 작업은 필수적인 부분입니다. 이 기사에서는 Go 언어를 사용하여 데이터베이스 추가, 삭제, 수정 및 쿼리 작업을 구현하는 방법을 소개합니다. Go 언어에서는 일반적으로 사용되는 SQL 패키지, Gorm 등과 같은 타사 라이브러리를 사용하여 데이터베이스를 운영합니다. 여기서는 sql 패키지를 예로 들어 데이터베이스의 추가, 삭제, 수정 및 쿼리 작업을 구현하는 방법을 소개합니다. MySQL 데이터베이스를 사용하고 있다고 가정합니다.

iOS 18에는 손실되거나 손상된 사진을 검색할 수 있는 새로운 '복구된' 앨범 기능이 추가되었습니다. iOS 18에는 손실되거나 손상된 사진을 검색할 수 있는 새로운 '복구된' 앨범 기능이 추가되었습니다. Jul 18, 2024 am 05:48 AM

Apple의 최신 iOS18, iPadOS18 및 macOS Sequoia 시스템 릴리스에는 사진 애플리케이션에 중요한 기능이 추가되었습니다. 이 기능은 사용자가 다양한 이유로 손실되거나 손상된 사진과 비디오를 쉽게 복구할 수 있도록 설계되었습니다. 새로운 기능에는 사진 앱의 도구 섹션에 '복구됨'이라는 앨범이 도입되었습니다. 이 앨범은 사용자가 기기에 사진 라이브러리에 포함되지 않은 사진이나 비디오를 가지고 있을 때 자동으로 나타납니다. "복구된" 앨범의 출현은 데이터베이스 손상으로 인해 손실된 사진과 비디오, 사진 라이브러리에 올바르게 저장되지 않은 카메라 응용 프로그램 또는 사진 라이브러리를 관리하는 타사 응용 프로그램에 대한 솔루션을 제공합니다. 사용자는 몇 가지 간단한 단계만 거치면 됩니다.

Hibernate는 어떻게 다형성 매핑을 구현합니까? Hibernate는 어떻게 다형성 매핑을 구현합니까? Apr 17, 2024 pm 12:09 PM

Hibernate 다형성 매핑은 상속된 클래스를 데이터베이스에 매핑할 수 있으며 다음 매핑 유형을 제공합니다. Join-subclass: 상위 클래스의 모든 열을 포함하여 하위 클래스에 대한 별도의 테이블을 생성합니다. 클래스별 테이블: 하위 클래스별 열만 포함하는 하위 클래스에 대한 별도의 테이블을 만듭니다. Union-subclass: Joined-subclass와 유사하지만 상위 클래스 테이블이 모든 하위 클래스 열을 통합합니다.

PHP에서 MySQLi를 사용하여 데이터베이스 연결을 설정하는 방법에 대한 자세한 튜토리얼 PHP에서 MySQLi를 사용하여 데이터베이스 연결을 설정하는 방법에 대한 자세한 튜토리얼 Jun 04, 2024 pm 01:42 PM

MySQLi를 사용하여 PHP에서 데이터베이스 연결을 설정하는 방법: MySQLi 확장 포함(require_once) 연결 함수 생성(functionconnect_to_db) 연결 함수 호출($conn=connect_to_db()) 쿼리 실행($result=$conn->query()) 닫기 연결( $conn->close())

HTML이 데이터베이스를 읽는 방법에 대한 심층 분석 HTML이 데이터베이스를 읽는 방법에 대한 심층 분석 Apr 09, 2024 pm 12:36 PM

HTML은 데이터베이스를 직접 읽을 수 없지만 JavaScript 및 AJAX를 통해 읽을 수 있습니다. 단계에는 데이터베이스 연결 설정, 쿼리 보내기, 응답 처리 및 페이지 업데이트가 포함됩니다. 이 기사에서는 JavaScript, AJAX 및 PHP를 사용하여 MySQL 데이터베이스에서 데이터를 읽는 실제 예제를 제공하고 쿼리 결과를 HTML 페이지에 동적으로 표시하는 방법을 보여줍니다. 이 예제에서는 XMLHttpRequest를 사용하여 데이터베이스 연결을 설정하고 쿼리를 보내고 응답을 처리함으로써 페이지 요소에 데이터를 채우고 데이터베이스를 읽는 HTML 기능을 실현합니다.

PHP에서 데이터베이스 연결 오류를 처리하는 방법 PHP에서 데이터베이스 연결 오류를 처리하는 방법 Jun 05, 2024 pm 02:16 PM

PHP에서 데이터베이스 연결 오류를 처리하려면 다음 단계를 사용할 수 있습니다. mysqli_connect_errno()를 사용하여 오류 코드를 얻습니다. 오류 메시지를 얻으려면 mysqli_connect_error()를 사용하십시오. 이러한 오류 메시지를 캡처하고 기록하면 데이터베이스 연결 문제를 쉽게 식별하고 해결할 수 있어 애플리케이션이 원활하게 실행될 수 있습니다.

PHP를 사용하여 데이터베이스에서 중국어 왜곡 문자를 처리하기 위한 팁과 사례 PHP를 사용하여 데이터베이스에서 중국어 왜곡 문자를 처리하기 위한 팁과 사례 Mar 27, 2024 pm 05:21 PM

PHP는 웹사이트 개발에 널리 사용되는 백엔드 프로그래밍 언어로, 강력한 데이터베이스 운영 기능을 갖추고 있으며 MySQL과 같은 데이터베이스와 상호 작용하는 데 자주 사용됩니다. 그러나 한자 인코딩의 복잡성으로 인해 데이터베이스에서 잘못된 한자를 처리할 때 문제가 자주 발생합니다. 이 기사에서는 잘못된 문자의 일반적인 원인, 솔루션 및 특정 코드 예제를 포함하여 데이터베이스에서 중국어 잘못된 문자를 처리하기 위한 PHP의 기술과 사례를 소개합니다. 문자가 왜곡되는 일반적인 이유는 잘못된 데이터베이스 문자 집합 설정 때문입니다. 데이터베이스를 생성할 때 utf8 또는 u와 같은 올바른 문자 집합을 선택해야 합니다.

Golang을 사용하여 원격 데이터베이스에 연결하는 방법은 무엇입니까? Golang을 사용하여 원격 데이터베이스에 연결하는 방법은 무엇입니까? Jun 01, 2024 pm 08:31 PM

Go 표준 라이브러리 데이터베이스/sql 패키지를 통해 MySQL, PostgreSQL 또는 SQLite와 같은 원격 데이터베이스에 연결할 수 있습니다. 데이터베이스 연결 정보가 포함된 연결 문자열을 생성합니다. sql.Open() 함수를 사용하여 데이터베이스 연결을 엽니다. SQL 쿼리 및 삽입 작업과 같은 데이터베이스 작업을 수행합니다. 리소스를 해제하기 위해 defer를 사용하여 데이터베이스 연결을 닫습니다.

See all articles