데이터 베이스 MySQL 튜토리얼 Oracle 不使用索引的原因有哪些?

Oracle 不使用索引的原因有哪些?

Jun 07, 2016 pm 05:36 PM
오라클 인덱스

今天开始总结一下oracle不使用索引的原因有哪些。一边学习一边做笔记。聚簇因子是衡量索引列数据顺序与表字段数据顺序相似性的一

今天开始总结一下Oracle不使用索引的原因有哪些。一边学习一边做笔记。

第一种:行数存在差异。

在视图user_tables存在一个num_rows字段,该字段是记录在统计信息收集后所对应对象的行数,在user_tab_columns视图中存在一个num_distinct字段,该字段记录每个字段内不同数值的个数。oracle认为当num_distinct越接近num_rows的时候索引的选择性越好,那么在执行查询的时候越容易使用索引。

第二种:聚簇因子:

什么是聚簇因子?

聚簇因子是衡量索引列数据顺序与表字段数据顺序相似性的一个值。我们都知道在创建的表中一般都是堆表,也就是数据在表中存储是无续的,那么为了更加快速的访问数据,我们通常使用索引进行数据访问,这时候没个索引都有一个聚簇因子,聚簇因子越接近对象的块数,那么选择性越好,越接近表的行数那么选择性越差。

之前听到有个朋友曾经提到这么一个问题“为什么我在测试环境查询一个数据很快和在生产环境查询数据怎么这么慢呢?表结构都一样的,数据也是一样的。”。那么不妨看看聚簇因子是多少。

聚簇因子的查看是从user_ind_statistics视图中: CLUSTERING_FACTOR 表示的。看一下官方介绍:

Indicates the amount of order of the rows in the table based on the values of the index.

  • If the value is near the number of blocks, then the table is very well ordered. In this case, the index entries in a single leaf block tend to point to rows in the same data blocks.

  • If the value is near the number of rows, then the table is very randomly ordered. In this case, it is unlikely that index entries in the same leaf block point to rows in the same data blocks.

  • 往往聚簇因子的大小和数据获取的I/o存在一定的相似性。如果聚簇因子大,那么相对的物理或是逻辑(一般是)i/o开销很大,也就是块被频繁反复读取,一致数据获取很慢。

    长查询的视图有dba_ind_statistics和dba_tab_statistics

    第三种:使用不等条件:

    当使用在进行查询数据的时候使用不等条件,,那么oracle任务这个符号会需要读取大部分的数据块,那么就会跳过使用索引。eg:

    SQL> select index_name,table_name,column_name from user_ind_columns where table_name='EMP';

    INDEX_NAME                    TABLE_NAME                    COLUMN_NAME
    ------------------------------ ------------------------------ ----------------------------------------
    EMP_IDX1                      EMP                            DEPTNO
    EMP_IDX1                      EMP                            EMPNO

    SQL> select * from emp;

        EMPNO ENAME      JOB              MGR HIREDATE        SAL      COMM    DEPTNO
    ---------- ---------- --------- ---------- --------- ---------- ---------- ----------
          7782 CLARK      MANAGER        7839 09-JUN-81      2450                    10
          7839 KING      PRESIDENT            17-NOV-81      5000                    10
          7934 MILLER    CLERK          7782 23-JAN-82      1300                    10
          7369 SMITH      CLERK          7902 17-DEC-80        800                    20
          7566 JONES      MANAGER        7839 02-APR-81      2975                    20
          7788 SCOTT      ANALYST        7566 19-APR-87      3000                    20
          7876 ADAMS      CLERK          7788 23-MAY-87      1100                    20
          7902 FORD      ANALYST        7566 03-DEC-81      3000                    20
          7499 ALLEN      SALESMAN        7698 20-FEB-81      1600        300        30
          7521 WARD      SALESMAN        7698 22-FEB-81      1250        500        30
          7654 MARTIN    SALESMAN        7698 28-SEP-81      1250      1400        30
          7698 BLAKE      MANAGER        7839 01-MAY-81      2850                    30
          7844 TURNER    SALESMAN        7698 08-SEP-81      1500          0        30
          7900 JAMES      CLERK          7698 03-DEC-81        950                    30

    14 rows selected.

    SQL> set autotrace trace exp
    SQL> select * from emp where empno7900;

    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 822536733

    본 웹사이트의 성명
    본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

    핫 AI 도구

    Undresser.AI Undress

    Undresser.AI Undress

    사실적인 누드 사진을 만들기 위한 AI 기반 앱

    AI Clothes Remover

    AI Clothes Remover

    사진에서 옷을 제거하는 온라인 AI 도구입니다.

    Undress AI Tool

    Undress AI Tool

    무료로 이미지를 벗다

    Clothoff.io

    Clothoff.io

    AI 옷 제거제

    AI Hentai Generator

    AI Hentai Generator

    AI Hentai를 무료로 생성하십시오.

    인기 기사

    R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
    3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. 최고의 그래픽 설정
    3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
    3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
    WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
    4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

    뜨거운 도구

    메모장++7.3.1

    메모장++7.3.1

    사용하기 쉬운 무료 코드 편집기

    SublimeText3 중국어 버전

    SublimeText3 중국어 버전

    중국어 버전, 사용하기 매우 쉽습니다.

    스튜디오 13.0.1 보내기

    스튜디오 13.0.1 보내기

    강력한 PHP 통합 개발 환경

    드림위버 CS6

    드림위버 CS6

    시각적 웹 개발 도구

    SublimeText3 Mac 버전

    SublimeText3 Mac 버전

    신 수준의 코드 편집 소프트웨어(SublimeText3)

    Alter Table 문을 사용하여 MySQL에서 테이블을 어떻게 변경합니까? Alter Table 문을 사용하여 MySQL에서 테이블을 어떻게 변경합니까? Mar 19, 2025 pm 03:51 PM

    이 기사는 MySQL의 Alter Table 문을 사용하여 열 추가/드롭 테이블/열 변경 및 열 데이터 유형 변경을 포함하여 테이블을 수정하는 것에 대해 설명합니다.

    InnoDB 전체 텍스트 검색 기능을 설명하십시오. InnoDB 전체 텍스트 검색 기능을 설명하십시오. Apr 02, 2025 pm 06:09 PM

    InnoDB의 전체 텍스트 검색 기능은 매우 강력하여 데이터베이스 쿼리 효율성과 대량의 텍스트 데이터를 처리 할 수있는 능력을 크게 향상시킬 수 있습니다. 1) InnoDB는 기본 및 고급 검색 쿼리를 지원하는 역 색인화를 통해 전체 텍스트 검색을 구현합니다. 2) 매치 및 키워드를 사용하여 검색, 부울 모드 및 문구 검색을 지원합니다. 3) 최적화 방법에는 워드 세분화 기술 사용, 인덱스의 주기적 재건 및 캐시 크기 조정, 성능과 정확도를 향상시키는 것이 포함됩니다.

    MySQL 연결에 대한 SSL/TLS 암호화를 어떻게 구성합니까? MySQL 연결에 대한 SSL/TLS 암호화를 어떻게 구성합니까? Mar 18, 2025 pm 12:01 PM

    기사는 인증서 생성 및 확인을 포함하여 MySQL에 대한 SSL/TLS 암호화 구성에 대해 설명합니다. 주요 문제는 자체 서명 인증서의 보안 영향을 사용하는 것입니다. [문자 수 : 159]

    인기있는 MySQL GUI 도구는 무엇입니까 (예 : MySQL Workbench, Phpmyadmin)? 인기있는 MySQL GUI 도구는 무엇입니까 (예 : MySQL Workbench, Phpmyadmin)? Mar 21, 2025 pm 06:28 PM

    기사는 MySQL Workbench 및 Phpmyadmin과 같은 인기있는 MySQL GUI 도구에 대해 논의하여 초보자 및 고급 사용자를위한 기능과 적합성을 비교합니다. [159 자].

    MySQL에서 큰 데이터 세트를 어떻게 처리합니까? MySQL에서 큰 데이터 세트를 어떻게 처리합니까? Mar 21, 2025 pm 12:15 PM

    기사는 MySQL에서 파티셔닝, 샤딩, 인덱싱 및 쿼리 최적화를 포함하여 대규모 데이터 세트를 처리하기위한 전략에 대해 설명합니다.

    드롭 테이블 문을 사용하여 MySQL에서 테이블을 어떻게 드롭합니까? 드롭 테이블 문을 사용하여 MySQL에서 테이블을 어떻게 드롭합니까? Mar 19, 2025 pm 03:52 PM

    이 기사에서는 Drop Table 문을 사용하여 MySQL에서 테이블을 떨어 뜨리는 것에 대해 설명하여 예방 조치와 위험을 강조합니다. 백업 없이는 행동이 돌이킬 수 없으며 복구 방법 및 잠재적 생산 환경 위험을 상세하게합니다.

    JSON 열에서 인덱스를 어떻게 생성합니까? JSON 열에서 인덱스를 어떻게 생성합니까? Mar 21, 2025 pm 12:13 PM

    이 기사에서는 PostgreSQL, MySQL 및 MongoDB와 같은 다양한 데이터베이스에서 JSON 열에서 인덱스를 작성하여 쿼리 성능을 향상시킵니다. 특정 JSON 경로를 인덱싱하는 구문 및 이점을 설명하고 지원되는 데이터베이스 시스템을 나열합니다.

    다양한 유형의 MySQL 인덱스 (B-Tree, Hash, Full-Text, Spatial)를 설명하십시오. 다양한 유형의 MySQL 인덱스 (B-Tree, Hash, Full-Text, Spatial)를 설명하십시오. Apr 02, 2025 pm 07:05 PM

    MySQL은 B-Tree, Hash, Full-Text 및 Spatial의 4 가지 인덱스 유형을 지원합니다. 1.B- 트리 색인은 동일한 값 검색, 범위 쿼리 및 정렬에 적합합니다. 2. 해시 인덱스는 동일한 값 검색에 적합하지만 범위 쿼리 및 정렬을 지원하지 않습니다. 3. 전체 텍스트 색인은 전체 텍스트 검색에 사용되며 다량의 텍스트 데이터를 처리하는 데 적합합니다. 4. 공간 지수는 지리 공간 데이터 쿼리에 사용되며 GIS 응용 프로그램에 적합합니다.

    See all articles