> 데이터 베이스 > MySQL 튜토리얼 > SQL索引学习-索引结构

SQL索引学习-索引结构

WBOY
풀어 주다: 2016-06-07 17:39:05
원래의
957명이 탐색했습니다.

SQL索引学习-索引结构 前一阵无意中和同事讨论过一个SQL相关的题(通过一个小问题来学习SQL关联查询),很惭愧一个非常简单的问题由于种种原因居然没有回答正确,数据库知识方面我算不上技术好,谈起SQL知识的学习我得益于2008年进的一家公司,有几个DBA技术相

SQL索引学习-索引结构

前一阵无意中和同事讨论过一个SQL相关的题(通过一个小问题来学习SQL关联查询),很惭愧一个非常简单的问题由于种种原因居然没有回答正确,数据库知识方面我算不上技术好,谈起SQL知识的学习我得益于2008年进的一家公司,有几个DBA技术相当专业,正好手上有一个项目遇到了一些数据库查询性能问题,就试着想办法优化,于是自己将相法和DBA沟通后,居然得到了他们的赞同,让我信心大增,后来一段时间我又主动找他们聊了一些其它的知识,所以在数据库索引这块我算是相对一般的.net程序员要更加有见解一些。当时我们部门由于分工的不同,部门20多人基本上工作中从来不和SQL打交道,后台的接口都由其它部门来完成了,我们注意的 业务逻辑,所以有一些完全不懂SQL的程序员。之后的四年我大部分都是做一些通用平台架构方面的工作,也比较少直接接触SQL,直到后来换了公司,特别是去年开始由于项目性质的变化,我开始慢慢又开始接触SQL。    

工作时间的长短在某种程度上能决定一个人的技术水平,但往往技术水平和实际工作的产出不一定成正比。比如我上面提到那个SQL问题,很多有经验的程序员在第一个答案中往往回答错误,但他确实能将项目做好,因为大家平时观注的还是结果,只要结果出来了比什么都强,至于为什么出这样的结果一般也就不会多做分析研究。这种形式呢,对那些对技术提升没有强烈要求的人来讲,已经够用了,多试几次,只要最终能出结果也就万事大吉了,做的多了,后续遇到类似的问题也就轻车熟路了,这就是所谓的经验,只知道这样做就能出结果。    

其实这种工作学习方式呢,有一个比较显著的问题,就是对自己写出来的东西没有足够的信心,因为靠的是以往的经验。是出现错误之后通过不断的尝试来取得的经验,有一种探索的味道,在工作效率上会存在问题,因为总有你以前没有遇到过的场景,这样你可能对第一方案做多次尝试才找到正解,反之的话,第一个方案可能花的时间稍长一些,但后续反复修改的次数会相当较少。

SQL索引目录   

借这次机会呢,将SQL索引的理解整理出来,供大家一起学习提高,这是我的学习笔记,有错误的地方,欢迎大家批评指正。下面是预计的目录:

页和区

要想做好索引优化,知道索引的存储结构是至关重要的。谈到存储就需要了解SQL中的页和区的概念:  

  • SQL中存储数据的基础单位就是页,一个页大小为8K,数据库可以将数据从逻辑上分成页,磁盘的I/O操作就是在页级执行。页包信三项内容:

  • 96字节大小的标头,存储统计信息,包括页码、页类型、页的可用空间以及拥有该页的对象的分配单元 ID。页类型我们知识如下三项基本就够用:
  • 数据行
  • 行偏移量
  • 一个区包含8个页,它是管理空间的单位,分为如下两类
  • 一般情况下,给表或者索引申请新的空间时,从混合区分配,当这个表或者索引的空间超过8个页大小时,会将原本在混合区的页转移到统一区管理。
  • 表存储结构

    知识了区以及页的概念,再看下数据表和这两者之间的联系, 表包含一个或多个分区,每个分区在一个堆或一个聚集索引结构中包含数据行。从下图的结构中,我们就看到了索引的重要结构B-树了。

                

     

    聚集索引结构

    索引中的底层节点称为叶节点。根节点与叶节点之间的任何索引级别统称为中间级。在聚集索引中,叶节点包含基础表的数据页。根节点和中间级节点包含存有索引行的索引页。每个索引行包含一个键值和一个指针,该指针指向 B -树上的某一中间级页或叶级索引中的某个数据行。每级索引中的页均被链接在双向链接列表中。

             

    非聚集索引结构

               

    非聚集索引与聚集索引之间的显著差别在于以下两点:

  • 基础表的数据行不按非聚集键的顺序排序和存储。
  • 非聚集索引的叶层是由索引页而不是由数据页组成。
  • 问题:
  • 索引的结构到底分多少层?
  • 我们先看下B-树,这种索引结构有一个重要的参数n,它决定了索引存储页的布局,每个存储页需要存放n个节点,以及n+1个指针。 这里我们来做个计算:比如我们的索引是一个整形数字,4个字节,指针需要8个字节,这里不考虑索引页标头信息的占用,算下最大的n,公式: 4n+8(n+1)

  • 什么是稠密索引?
  • 索引中的键顺序与数据文件中的排序顺序相同,所以我们的索引结构中,叶级均采用稿密索引。

  • 什么是稀疏索引?
  • 它只为每个存储块设计键-指针对,比稿密索引节约空间,出现在叶级之上的结构中。

  • 索引结构中会出现如下情况吗?
  • 관련 라벨:
    원천:php.cn
    본 웹사이트의 성명
    본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
    최신 이슈
    인기 튜토리얼
    더>
    최신 다운로드
    더>
    웹 효과
    웹사이트 소스 코드
    웹사이트 자료
    프론트엔드 템플릿