浅谈Oracle绑定变量
绑定变量在OLTP环境下,被广泛的使用;这源于OLTP的特点和sql语句的执行过程,OLTP典型的事务短,类似的sql语句执行率高,并发大;oracle在执行sql语句前会对sql
绑定变量在OLTP环境下,被广泛的使用;这源于OLTP的特点和sql语句的执行过程,OLTP典型的事务短,类似的sql语句执行率高,并发大;oracle在执行sql语句前会对sql语句进行hash运算,将得到的hash值和share pool中的library cache中对比,网站空间,如果未命中,则这条sql语句需要执行硬解析,如果命中,则只需要进行软解析;硬解析的执行过程是先进行语义,语法分析,然后生成执行计划,最后执行sql语句,在OLTP系统中使用绑定变量可以很好的解决这个问题!
一:oltp环境下,使用绑定变量和不使用绑定变量对比
1:创建测试数据
2:不使用绑定变量情况下,进行sql trace分析,执行1万次,需要硬解析10003次,其中包含递归解析,解析时间为19.37s,cpu消耗为17.62
3:使用绑定变量情况下,进行sql trace分析,香港虚拟主机,执行1万次,只需要硬解析5次,香港空间,其中包含递归解析,解析时间和cpu时间基本忽略不计
二:使用绑定变量有如此好的效果,那么这是不是百利无一害的技术手段呢?下面在OLAP环境下测试
1:创建测试数据,olap环境下分区的技术非常普遍,且数据量非常大
2:查询object_id落在1-5999之间的数据,查看执行计划,这里选择了全表扫描为最优的执行计划
3:查询object_id落在1000-15000之间的数据,查看执行计划,这里选择了索引访问扫描为最优的执行计划
结论:由此可见,使用绑定变量应该尽量保证使用绑定变量的sql语句执行计划应当相同,否则将造成问题,因而绑定变量不适用于OLAP环境中!
三:在前面的测试中,1-5999之间的查询,为什么不选择分区范围扫描?1000-5000之间的查询,为什么不选择全表扫描,使用索引,不会产生无谓的2次I/O吗?要了解这些,就要开启数据库的10053时间,分析cbo如何选择执行计划?
1:分析1-5999之间查询的10053事件
trace文件关键内容:
***************************************
Column Usage Monitoring is ON: tracking level = 1
***************************************
****************
QUERY BLOCK TEXT
****************
select object_id,count(*) from t2 where object_id between 1 and 5999 group by object_id
*********************
QUERY BLOCK SIGNATURE
*********************
qb name was generated
signature (optimizer): qb_name=SEL$1 nbfros=1 flg=0
fro(0): flg=0 objn=54910 hint_alias="T2"@"SEL$1"
*****************************
SYSTEM STATISTICS INFORMATION
*****************************
Using NOWORKLOAD Stats
CPUSPEED: 587 millions instruction/sec
IOTFRSPEED: 4096 bytes per millisecond (default is 4096)
IOSEEKTIM: 10 milliseconds (default is 10)
***************************************
BASE STATISTICAL INFORMATION
***********************
Table Stats::
Table: T2 Alias: T2 (Using composite stats)
(making adjustments for partition skews)
ORIGINAL VALUES:: #Rows: 15078669 #Blks: 71051 AvgRowLen: 28.00
PARTITIONS::
PRUNED: 2
ANALYZED: 2 UNANALYZED: 0
#Rows: 15078669 #Blks: 10756 AvgRowLen: 28.00
Index Stats::
Index: I_T_ID Col#: 1
USING COMPOSITE STATS
LVLS: 2 #LB: 33742 #DK: 50440 LB/K: 1.00 DB/K: 303.00 CLUF: 15299802.00
Column (#1): OBJECT_ID(NUMBER)
AvgLen: 5.00 NDV: 50440 Nulls: 0 Density: 1.9826e-05 Min: 33 Max: 54914
***************************************
SINGLE TABLE ACCESS PATH
Table: T2 Alias: T2
Card: Original: 15078669 Rounded: 1639470 Computed: 1639469.86 Non Adjusted: 1639469.86
Access Path: TableScan
Cost: 2432.43 Resp: 2432.43 Degree: 0
Cost_io: 2355.00 Cost_cpu: 545542277
Resp_io: 2355.00 Resp_cpu: 545542277
Access Path: index (index (FFS))
Index: I_T_ID
resc_io: 7383.00 resc_cpu: 2924443977
ix_sel: 0.0000e+00 ix_sel_with_filters: 1
Access Path: index (FFS)
Cost: 7798.09 Resp: 7798.09 Degree: 1
Cost_io: 7383.00 Cost_cpu: 2924443977
Resp_io: 7383.00 Resp_cpu: 2924443977
Access Path: index (IndexOnly)
Index: I_T_ID
resc_io: 3671.00 resc_cpu: 358846806
ix_sel: 0.10873 ix_sel_with_filters: 0.10873
Cost: 3721.93 Resp: 3721.93 Degree: 1
Best:: AccessPath: TableScan
Cost: 2432.43 Degree: 1 Resp: 2432.43 Card: 1639469.86 Bytes: 0
Grouping column cardinality [ OBJECT_ID] 5484
2:分析1000-5000之间查询的10053事件
trace文件关键内容:

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 기사는 MySQL의 Alter Table 문을 사용하여 열 추가/드롭 테이블/열 변경 및 열 데이터 유형 변경을 포함하여 테이블을 수정하는 것에 대해 설명합니다.

기사는 인증서 생성 및 확인을 포함하여 MySQL에 대한 SSL/TLS 암호화 구성에 대해 설명합니다. 주요 문제는 자체 서명 인증서의 보안 영향을 사용하는 것입니다. [문자 수 : 159]

기사는 MySQL에서 파티셔닝, 샤딩, 인덱싱 및 쿼리 최적화를 포함하여 대규모 데이터 세트를 처리하기위한 전략에 대해 설명합니다.

기사는 MySQL Workbench 및 Phpmyadmin과 같은 인기있는 MySQL GUI 도구에 대해 논의하여 초보자 및 고급 사용자를위한 기능과 적합성을 비교합니다. [159 자].

이 기사에서는 Drop Table 문을 사용하여 MySQL에서 테이블을 떨어 뜨리는 것에 대해 설명하여 예방 조치와 위험을 강조합니다. 백업 없이는 행동이 돌이킬 수 없으며 복구 방법 및 잠재적 생산 환경 위험을 상세하게합니다.

InnoDB의 전체 텍스트 검색 기능은 매우 강력하여 데이터베이스 쿼리 효율성과 대량의 텍스트 데이터를 처리 할 수있는 능력을 크게 향상시킬 수 있습니다. 1) InnoDB는 기본 및 고급 검색 쿼리를 지원하는 역 색인화를 통해 전체 텍스트 검색을 구현합니다. 2) 매치 및 키워드를 사용하여 검색, 부울 모드 및 문구 검색을 지원합니다. 3) 최적화 방법에는 워드 세분화 기술 사용, 인덱스의 주기적 재건 및 캐시 크기 조정, 성능과 정확도를 향상시키는 것이 포함됩니다.

기사는 외국 열쇠를 사용하여 데이터베이스의 관계를 나타내고 모범 사례, 데이터 무결성 및 피할 수있는 일반적인 함정에 중점을 둡니다.

이 기사에서는 PostgreSQL, MySQL 및 MongoDB와 같은 다양한 데이터베이스에서 JSON 열에서 인덱스를 작성하여 쿼리 성능을 향상시킵니다. 특정 JSON 경로를 인덱싱하는 구문 및 이점을 설명하고 지원되는 데이터베이스 시스템을 나열합니다.
