백엔드 개발 파이썬 튜토리얼 python脚本监控docker容器

python脚本监控docker容器

Jun 10, 2016 pm 03:05 PM
docker python 컨테이너 감시 장치

本文实例为大家分享了python脚本监控docker容器的方法,供大家参考,具体内容如下

脚本功能:

1、监控CPU使用率

2、监控内存使用状况

3、监控网络流量

具体代码:

#!/usr/bin/env python
# --*-- coding:UTF-8 --*--
import sys
import tab
import re
import os
import time
from docker import Client
import commands
keys_container_stats_list = ['blkio_stats', 'precpu_stats', 'Network', 'read', 'memory_stats', 'cpu_stats']
merit_list=['usage','limit','mem_use_percent','total_cpu_usage','system_cpu_usage','cpu_usage_percent','rx_bytes','tx_bytes']
returnval = None
def start(container_name):
  global container_stats
  conn=Client(base_url='unix://run/docker.sock',version='1.19')
  generator=conn.stats(container_name)
  try:
    container_stats=eval(generator.next())
  except NameError,error_msg:
    pass
#    print error_msg
    container_stats=eval(generator.next())
  finally:
    conn.close()
def monitor_docker(monitor_item,merit):
  if merit == 'mem_use_percent':
    start(container_name)
    mem_usage = container_stats['memory_stats']['usage']
    mem_limit = container_stats['memory_stats']['limit']
    returnval = round(float(mem_usage) / float(mem_limit),2)
    print returnval
  elif merit == 'system_cpu_usage':
    start(container_name)
    first_result = container_stats['cpu_stats']['system_cpu_usage']
    start(container_name)
    second_result = container_stats['cpu_stats']['system_cpu_usage']
    returnval = second_result - first_result
    print returnval
  elif merit == 'total_cpu_usage':
    start(container_name)
    first_result = container_stats['cpu_stats']['cpu_usage']['total_usage']
    start(container_name)
    second_result = container_stats['cpu_stats']['cpu_usage']['total_usage']
    returnval = second_result - first_result
    print returnval
  elif merit == 'cpu_usage_percent':
    start(container_name)
    system_use=container_stats['cpu_stats']['system_cpu_usage']
    total_use=container_stats['cpu_stats']['cpu_usage']['total_usage']
    cpu_count=len(container_stats['cpu_stats']['cpu_usage']['percpu_usage'])
    returnval = round((float(total_use)/float(system_use))*cpu_count*100.0,2)
    print returnval
  elif merit == 'rx_bytes':
    command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $2}' | awk -F ':' '{print $2}' '''
    result_one = commands.getoutput(command)
    time.sleep(1)
    command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $2}' | awk -F ':' '{print $2}' '''
    result_second = commands.getoutput(command)
    returnval = round((int(result_second) - int(result_one))/1024,2)
    print returnval
  elif merit == 'tx_bytes':
    command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $6}' | awk -F ':' '{print $2}' '''
    result_one = commands.getoutput(command)
    time.sleep(1)
    command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $6}' | awk -F ':' '{print $2}' '''
    result_second = commands.getoutput(command)
    returnval = round((int(result_second) - int(result_one))/1024,2)
    print returnval
if __name__ == '__main__':
  command='''docker ps | awk '{print $NF}'| grep -v "NAMES"'''
  str=commands.getoutput(command)
  container_counts_list=str.split('\n')
  if sys.argv[1] not in container_counts_list:
    print container_counts_list
    print "你输入的容器名称错误,请重新执行脚本,并输入上述正确的容器名称."
    sys.exit(1)
  else:
    container_name = sys.argv[1]
    if sys.argv[2] not in keys_container_stats_list:
      print keys_container_stats_list
      print '你输入的容器监控项不在监控范围,请重新执行脚本,并输入上述正确的监控项.'
      sys.exit(1)
    else:
      monitor_item = sys.argv[2]
      if sys.argv[3] not in merit_list:
        print merit_list
        print "你输入的容器监控明细详细不在监控范围内,请重新执行脚本,并输入上述正确的明细监控指标."
      else:
        merit = sys.argv[3]
        monitor_docker(monitor_item,merit)
로그인 후 복사

 

以上就是python脚本监控docker容器的全部代码,希望对大家的学习有所帮助。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

PHP와 Python : 그들의 역사에 깊은 다이빙 PHP와 Python : 그들의 역사에 깊은 다이빙 Apr 18, 2025 am 12:25 AM

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

메모장으로 파이썬을 실행하는 방법 메모장으로 파이썬을 실행하는 방법 Apr 16, 2025 pm 07:33 PM

메모장에서 Python 코드를 실행하려면 Python 실행 파일 및 NPPEXEC 플러그인을 설치해야합니다. Python을 설치하고 경로를 추가 한 후 nppexec 플러그인의 명령 "Python"및 매개 변수 "{current_directory} {file_name}"을 구성하여 Notepad의 단축키 "F6"을 통해 Python 코드를 실행하십시오.

vscode를 사용하는 방법 vscode를 사용하는 방법 Apr 15, 2025 pm 11:21 PM

Visual Studio Code (VSCODE)는 Microsoft가 개발 한 크로스 플랫폼, 오픈 소스 및 무료 코드 편집기입니다. 광범위한 프로그래밍 언어에 대한 가볍고 확장 성 및 지원으로 유명합니다. VSCODE를 설치하려면 공식 웹 사이트를 방문하여 설치 프로그램을 다운로드하고 실행하십시오. VScode를 사용하는 경우 새 프로젝트를 만들고 코드 편집, 디버그 코드, 프로젝트 탐색, VSCODE 확장 및 설정을 관리 할 수 ​​있습니다. VSCODE는 Windows, MacOS 및 Linux에서 사용할 수 있으며 여러 프로그래밍 언어를 지원하며 Marketplace를 통해 다양한 확장을 제공합니다. 이점은 경량, 확장 성, 광범위한 언어 지원, 풍부한 기능 및 버전이 포함됩니다.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Golang vs. Python : 주요 차이점과 유사성 Golang vs. Python : 주요 차이점과 유사성 Apr 17, 2025 am 12:15 AM

Golang과 Python은 각각 고유 한 장점이 있습니다. Golang은 고성능 및 동시 프로그래밍에 적합하지만 Python은 데이터 과학 및 웹 개발에 적합합니다. Golang은 동시성 모델과 효율적인 성능으로 유명하며 Python은 간결한 구문 및 풍부한 라이브러리 생태계로 유명합니다.

See all articles