백엔드 개발 파이썬 튜토리얼 Python中的数据对象持久化存储模块pickle的使用示例

Python中的数据对象持久化存储模块pickle的使用示例

Jun 10, 2016 pm 03:05 PM
pickle python

Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原。具体用法如下:
pickle是Python库中常用的序列化工具,可以将内存对象以文本或二进制格式导出为字符串,或者写入文档。后续可以从字符或文档中还原为内存对象。新版本的Python中用c重新实现了一遍,叫cPickle,性能更高。 下面的代码演示了pickle库的常用接口用法,非常简单:

import cPickle as pickle

# dumps and loads
# 将内存对象dump为字符串,或者将字符串load为内存对象
def test_dumps_and_loads():
  t = {'name': ['v1', 'v2']}
  print t

  o = pickle.dumps(t)
  print o
  print 'len o: ', len(o)

  p = pickle.loads(o)
  print p

 

# 关于HIGHEST_PROTOCOL参数,pickle 支持3种protocol,0、1、2:
# http://stackoverflow.com/questions/23582489/python-pickle-protocol-choice
# 0:ASCII protocol,兼容旧版本的Python
# 1:binary format,兼容旧版本的Python
# 2:binary format,Python2.3 之后才有,更好的支持new-sytle class
def test_dumps_and_loads_HIGHEST_PROTOCOL():
  print 'HIGHEST_PROTOCOL: ', pickle.HIGHEST_PROTOCOL

  t = {'name': ['v1', 'v2']}
  print t

  o = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
  print 'len o: ', len(o)

  p = pickle.loads(o)
  print p


# new-style class
def test_new_sytle_class():
  class TT(object):
    def __init__(self, arg, **kwargs):
      super(TT, self).__init__()
      self.arg = arg
      self.kwargs = kwargs

    def test(self):
      print self.arg
      print self.kwargs

  # ASCII protocol
  t = TT('test', a=1, b=2)
  o1 = pickle.dumps(t)
  print o1
  print 'o1 len: ', len(o1)
  p = pickle.loads(o1)
  p.test()

  # HIGHEST_PROTOCOL对new-style class支持更好,性能更高
  o2 = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
  print 'o2 len: ', len(o2)
  p = pickle.loads(o2)
  p.test()


# dump and load
# 将内存对象序列化后直接dump到文件或支持文件接口的对象中
# 对于dump,需要支持write接口,接受一个字符串作为输入参数,比如:StringIO
# 对于load,需要支持read接口,接受int输入参数,同时支持readline接口,无输入参数,比如StringIO

# 使用文件,ASCII编码
def test_dump_and_load_with_file():
  t = {'name': ['v1', 'v2']}

  # ASCII format
  with open('test.txt', 'w') as fp:
    pickle.dump(t, fp)

  with open('test.txt', 'r') as fp:
    p = pickle.load(fp)
    print p


# 使用文件,二进制编码
def test_dump_and_load_with_file_HIGHEST_PROTOCOL():
  t = {'name': ['v1', 'v2']}
  with open('test.bin', 'wb') as fp:
    pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  with open('test.bin', 'rb') as fp:
    p = pickle.load(fp)
    print p


# 使用StringIO,二进制编码
def test_dump_and_load_with_StringIO():
  import StringIO

  t = {'name': ['v1', 'v2']}

  fp = StringIO.StringIO()
  pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  fp.seek(0)
  p = pickle.load(fp)
  print p

  fp.close()


# 使用自定义类
# 这里演示用户自定义类,只要实现了write、read、readline接口,
# 就可以用作dump、load的file参数
def test_dump_and_load_with_user_def_class():
  import StringIO

  class FF(object):
    def __init__(self):
      self.buf = StringIO.StringIO()

    def write(self, s):
      self.buf.write(s)
      print 'len: ', len(s)

    def read(self, n):
      return self.buf.read(n)

    def readline(self):
      return self.buf.readline()

    def seek(self, pos, mod=0):
      return self.buf.seek(pos, mod)

    def close(self):
      self.buf.close()

  fp = FF()
  t = {'name': ['v1', 'v2']}
  pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

  fp.seek(0)
  p = pickle.load(fp)
  print p

  fp.close()


# Pickler/Unpickler
# Pickler(file, protocol).dump(obj) 等价于 pickle.dump(obj, file[, protocol])
# Unpickler(file).load() 等价于 pickle.load(file)
# Pickler/Unpickler 封装性更好,可以很方便的替换file
def test_pickler_unpickler():
  t = {'name': ['v1', 'v2']}

  f = file('test.bin', 'wb')
  pick = pickle.Pickler(f, pickle.HIGHEST_PROTOCOL)
  pick.dump(t)
  f.close()

  f = file('test.bin', 'rb')
  unpick = pickle.Unpickler(f)
  p = unpick.load()
  print p
  f.close()

로그인 후 복사


pickle.dump(obj, file[, protocol])
这是将对象持久化的方法,参数的含义分别为:

  • obj: 要持久化保存的对象;
  • file: 一个拥有 write() 方法的对象,并且这个 write() 方法能接收一个字符串作为参数。这个对象可以是一个以写模式打开的文件对象或者一个 StringIO 对象,或者其他自定义的满足条件的对象。
  • protocol: 这是一个可选的参数,默认为 0 ,如果设置为 1 或 True,则以高压缩的二进制格式保存持久化后的对象,否则以ASCII格式保存。

对象被持久化后怎么还原呢?pickle 模块也提供了相应的方法,如下:

pickle.load(file)
只有一个参数 file ,对应于上面 dump 方法中的 file 参数。这个 file 必须是一个拥有一个能接收一个整数为参数的 read() 方法以及一个不接收任何参数的 readline() 方法,并且这两个方法的返回值都应该是字符串。这可以是一个打开为读的文件对象、StringIO 对象或其他任何满足条件的对象。

下面是一个基本的用例:

# -*- coding: utf-8 -*-

import pickle
# 也可以这样:
# import cPickle as pickle

obj = {"a": 1, "b": 2, "c": 3}

# 将 obj 持久化保存到文件 tmp.txt 中
pickle.dump(obj, open("tmp.txt", "w"))

# do something else ...

# 从 tmp.txt 中读取并恢复 obj 对象
obj2 = pickle.load(open("tmp.txt", "r"))

print obj2

# -*- coding: utf-8 -*-
 
import pickle
# 也可以这样:
# import cPickle as pickle
 
obj = {"a": 1, "b": 2, "c": 3}
 
# 将 obj 持久化保存到文件 tmp.txt 中
pickle.dump(obj, open("tmp.txt", "w"))
 
# do something else ...
 
# 从 tmp.txt 中读取并恢复 obj 对象
obj2 = pickle.load(open("tmp.txt", "r"))
 
print obj2

로그인 후 복사


不过实际应用中,我们可能还会有一些改进,比如用 cPickle 来代替 pickle ,前者是后者的一个 C 语言实现版本,拥有更快的速度,另外,有时在 dump 时也会将第三个参数设为 True 以提高压缩比。再来看下面的例子:

# -*- coding: utf-8 -*-

import cPickle as pickle
import random
import os

import time

LENGTH = 1024 * 10240

def main():
 d = {}
 a = []
 for i in range(LENGTH):
 a.append(random.randint(0, 255))

 d["a"] = a

 print "dumping..."

 t1 = time.time()
 pickle.dump(d, open("tmp1.dat", "wb"), True)
 print "dump1: %.3fs" % (time.time() - t1)

 t1 = time.time()
 pickle.dump(d, open("tmp2.dat", "w"))
 print "dump2: %.3fs" % (time.time() - t1)

 s1 = os.stat("tmp1.dat").st_size
 s2 = os.stat("tmp2.dat").st_size

 print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)

 print "loading..."

 t1 = time.time()
 obj1 = pickle.load(open("tmp1.dat", "rb"))
 print "load1: %.3fs" % (time.time() - t1)

 t1 = time.time()
 obj2 = pickle.load(open("tmp2.dat", "r"))
 print "load2: %.3fs" % (time.time() - t1)


if __name__ == "__main__":
 main()

# -*- coding: utf-8 -*-
 
import cPickle as pickle
import random
import os
 
import time
 
LENGTH = 1024 * 10240
 
def main():
 d = {}
 a = []
 for i in range(LENGTH):
 a.append(random.randint(0, 255))
 
 d["a"] = a
 
 print "dumping..."
 
 t1 = time.time()
 pickle.dump(d, open("tmp1.dat", "wb"), True)
 print "dump1: %.3fs" % (time.time() - t1)
 
 t1 = time.time()
 pickle.dump(d, open("tmp2.dat", "w"))
 print "dump2: %.3fs" % (time.time() - t1)
 
 s1 = os.stat("tmp1.dat").st_size
 s2 = os.stat("tmp2.dat").st_size
 
 print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)
 
 print "loading..."
 
 t1 = time.time()
 obj1 = pickle.load(open("tmp1.dat", "rb"))
 print "load1: %.3fs" % (time.time() - t1)
 
 t1 = time.time()
 obj2 = pickle.load(open("tmp2.dat", "r"))
 print "load2: %.3fs" % (time.time() - t1)
 
 
if __name__ == "__main__":
 main()

로그인 후 복사


在我的电脑上执行结果为:

dumping…
dump1: 1.297s
dump2: 4.750s
20992503, 68894198, 30.47%
loading…
load1: 2.797s
load2: 10.125s
로그인 후 복사

可以看到,dump 时如果指定了 protocol 为 True,压缩过后的文件的大小只有原来的文件的 30% ,同时无论在 dump 时还是 load 时所耗费的时间都比原来少。因此,一般来说,可以建议把这个值设为 True 。

另外,pickle 模块还提供 dumps 和 loads 两个方法,用法与上面的 dump 和 load 方法类似,只是不需要输入 file 参数,输入及输出都是字符串对象,有些场景中使用这两个方法可能更为方便。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

휴대폰에서 XML을 PDF로 변환 할 때 변환 속도가 빠르나요? 휴대폰에서 XML을 PDF로 변환 할 때 변환 속도가 빠르나요? Apr 02, 2025 pm 10:09 PM

모바일 XML에서 PDF의 속도는 다음 요인에 따라 다릅니다. XML 구조의 복잡성. 모바일 하드웨어 구성 변환 방법 (라이브러리, 알고리즘) 코드 품질 최적화 방법 (효율적인 라이브러리 선택, 알고리즘 최적화, 캐시 데이터 및 다중 스레딩 사용). 전반적으로 절대적인 답변은 없으며 특정 상황에 따라 최적화해야합니다.

휴대 전화에서 XML 파일을 PDF로 변환하는 방법은 무엇입니까? 휴대 전화에서 XML 파일을 PDF로 변환하는 방법은 무엇입니까? Apr 02, 2025 pm 10:12 PM

단일 애플리케이션으로 휴대 전화에서 직접 XML에서 PDF 변환을 완료하는 것은 불가능합니다. 두 단계를 통해 달성 할 수있는 클라우드 서비스를 사용해야합니다. 1. 클라우드에서 XML을 PDF로 변환하십시오. 2. 휴대 전화에서 변환 된 PDF 파일에 액세스하거나 다운로드하십시오.

C 언어 합계의 기능은 무엇입니까? C 언어 합계의 기능은 무엇입니까? Apr 03, 2025 pm 02:21 PM

C 언어에는 내장 합계 기능이 없으므로 직접 작성해야합니다. 합계는 배열 및 축적 요소를 가로 질러 달성 할 수 있습니다. 루프 버전 : 루프 및 배열 길이를 사용하여 계산됩니다. 포인터 버전 : 포인터를 사용하여 배열 요소를 가리키며 효율적인 합계는 자체 증가 포인터를 통해 달성됩니다. 동적으로 배열 버전을 할당 : 배열을 동적으로 할당하고 메모리를 직접 관리하여 메모리 누출을 방지하기 위해 할당 된 메모리가 해제되도록합니다.

XML을 PDF로 변환 할 수있는 모바일 앱이 있습니까? XML을 PDF로 변환 할 수있는 모바일 앱이 있습니까? Apr 02, 2025 pm 09:45 PM

XML 구조가 유연하고 다양하기 때문에 모든 XML 파일을 PDF로 변환 할 수있는 앱은 없습니다. XML에서 PDF의 핵심은 데이터 구조를 페이지 레이아웃으로 변환하는 것입니다. XML을 구문 분석하고 PDF를 생성해야합니다. 일반적인 방법으로는 요소 트리와 같은 파이썬 라이브러리를 사용한 XML 및 ReportLab 라이브러리를 사용하여 PDF를 생성하는 XML을 구문 분석합니다. 복잡한 XML의 경우 XSLT 변환 구조를 사용해야 할 수도 있습니다. 성능을 최적화 할 때는 멀티 스레드 또는 멀티 프로세스 사용을 고려하고 적절한 라이브러리를 선택하십시오.

권장 XML 서식 도구 권장 XML 서식 도구 Apr 02, 2025 pm 09:03 PM

XML 서식 도구는 규칙에 따라 코드를 입력하여 가독성과 이해를 향상시킬 수 있습니다. 도구를 선택할 때는 사용자 정의 기능, 특수 상황 처리, 성능 및 사용 편의성에주의하십시오. 일반적으로 사용되는 도구 유형에는 온라인 도구, IDE 플러그인 및 명령 줄 도구가 포함됩니다.

휴대 전화에서 XML을 PDF로 변환하는 방법은 무엇입니까? 휴대 전화에서 XML을 PDF로 변환하는 방법은 무엇입니까? Apr 02, 2025 pm 10:18 PM

휴대 전화에서 XML을 PDF로 직접 변환하는 것은 쉽지 않지만 클라우드 서비스를 통해 달성 할 수 있습니다. 가벼운 모바일 앱을 사용하여 XML 파일을 업로드하고 생성 된 PDF를 수신하고 클라우드 API로 변환하는 것이 좋습니다. Cloud API는 Serverless Computing Services를 사용하고 올바른 플랫폼을 선택하는 것이 중요합니다. XML 구문 분석 및 PDF 생성을 처리 할 때 복잡성, 오류 처리, 보안 및 최적화 전략을 고려해야합니다. 전체 프로세스에는 프론트 엔드 앱과 백엔드 API가 함께 작동해야하며 다양한 기술에 대한 이해가 필요합니다.

XML을 그림으로 변환하는 방법 XML을 그림으로 변환하는 방법 Apr 03, 2025 am 07:39 AM

XSLT 변환기 또는 이미지 라이브러리를 사용하여 XML을 이미지로 변환 할 수 있습니다. XSLT 변환기 : XSLT 프로세서 및 스타일 시트를 사용하여 XML을 이미지로 변환합니다. 이미지 라이브러리 : Pil 또는 Imagemagick와 같은 라이브러리를 사용하여 XML 데이터에서 이미지를 그리기 및 텍스트 그리기와 같은 이미지를 만듭니다.

XML 형식을 여는 방법 XML 형식을 여는 방법 Apr 02, 2025 pm 09:00 PM

대부분의 텍스트 편집기를 사용하여 XML 파일을여십시오. 보다 직관적 인 트리 디스플레이가 필요한 경우 Oxygen XML 편집기 또는 XMLSPy와 같은 XML 편집기를 사용할 수 있습니다. 프로그램에서 XML 데이터를 처리하는 경우 프로그래밍 언어 (예 : Python) 및 XML 라이브러 (예 : XML.etree.elementtree)를 사용하여 구문 분석해야합니다.

See all articles