详解Python验证码识别
以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式。这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别。
以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagic,PS可以相比了。(这里有PIL不错的文档)
由于上面的验证码是24位的jpeg图像,并且包含了噪点,所以我们要做的就是去噪和去色,我拿PS找了张验证码试了试,使用PS滤镜中的去噪效果还行, 但是没有在PIL找到去噪的函数,后来发现中值过滤后可以去掉大部分的噪点,而且PIL里有现成的函数,接下来我试着直接把图像转换为单色,结果发现还是 会有不过的噪点留了下来,因为中值过滤时把不少噪点淡化了,但转换为音色时这些噪点又被强化显示了,于是在中值过滤后对图像亮度进行加强处理,然后再转换 为单色,这样验证码图片就变得比较容易识别了:
上面这些处理使用Python才几行:
im = Image.open(image_name) im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(im) im = enhancer.enhance(2) im = im.convert('1') im.show()
接下来就是提取这些数字的字模,使用shell脚本下载100幅图片,抽出三张图片获取字模:
#!/usr/bin/env python #encoding=utf-8 import Image,ImageEnhance,ImageFilter import sys image_name = "./images/81.jpeg" im = Image.open(image_name) im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(im) im = enhancer.enhance(2) im = im.convert('1') #im.show() #all by pixel s = 12 #start postion of first number w = 10 #width of each number h = 15 #end postion from top t = 2 #start postion of top im_new = [] #split four numbers in the picture for i in range(4): im1 = im.crop((s+w*i+i*2,t,s+w*(i+1)+i*2,h)) im_new.append(im1) f = file("data.txt","a") for k in range(4): l = [] #im_new[k].show() for i in range(13): for j in range(10): if (im_new[k].getpixel((j,i)) == 255): l.append(0) else: l.append(1) f.write("l=[") n = 0 for i in l: if (n%10==0): f.write("/n") f.write(str(i)+",") n+=1 f.write("]/n")
把字模保存为list,用于接下来的匹配;
提取完字模后剩下来的就是对需要处理的图片进行与数据库中的字模进行匹配了,基本的思路就是看相应点的重合率,但是由于噪点的影响在对(6,8) (8,3)(5,9)的匹配时容易出错,俺自己针对已有的100幅图片数据采集进行分析,采用了双向匹配(图片与字模分别作为基点),做了半天的测试终于 可以实现100%的识别率。
#!/usr/bin/env python #encoding=utf-8 import Image,ImageEnhance,ImageFilter import Data DEBUG = False def d_print(*msg): global DEBUG if DEBUG: for i in msg: print i, print else: pass def Get_Num(l=[]): min1 = [] min2 = [] for n in Data.N: count1=count2=count3=count4=0 if (len(l) != len(n)): print "Wrong pic" exit() for i in range(len(l)): if (l[i] == 1): count1+=1 if (n[i] == 1): count2+=1 for i in range(len(l)): if (n[i] == 1): count3+=1 if (l[i] == 1): count4+=1 d_print(count1,count2,count3,count4) min1.append(count1-count2) min2.append(count3-count4) d_print(min1,"/n",min2) for i in range(10): if (min1[i] <= 2 or min2[i] <= 2): if ((abs(min1[i] - min2[i])) <10): return i for i in range(10): if (min1[i] <= 4 or min2[i] <= 4): if (abs(min1[i] - min2[i]) <= 2): return i for i in range(10): flag = False if (min1[i] <= 3 or min2[i] <= 3): for j in range(10): if (j != i and (min1[j] <5 or min2[j] <5)): flag = True else: pass if (not flag): return i for i in range(10): if (min1[i] <= 5 or min2[i] <= 5): if (abs(min1[i] - min2[i]) <= 10): return i for i in range(10): if (min1[i] <= 10 or min2[i] <= 10): if (abs(min1[i] - min2[i]) <= 3): return i #end of function Get_Num def Pic_Reg(image_name=None): im = Image.open(image_name) im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(im) im = enhancer.enhance(2) im = im.convert('1') im.show() #all by pixel s = 12 #start postion of first number w = 10 #width of each number h = 15 #end postion from top t = 2 #start postion of top im_new = [] #split four numbers in the picture for i in range(4): im1 = im.crop((s+w*i+i*2,t,s+w*(i+1)+i*2,h)) im_new.append(im1) s = "" for k in range(4): l = [] #im_new[k].show() for i in range(13): for j in range(10): if (im_new[k].getpixel((j,i)) == 255): l.append(0) else: l.append(1) s+=str(Get_Num(l)) return s print Pic_Reg("./images/22.jpeg")
这里再提一下验证码识别的基本方法:截图,二值化、中值滤波去噪、分割、紧缩重排(让高矮统一)、字库特征匹配识别。
这里只是针对一般的验证码,高级验证码的识别这里有篇不错的文章,太复杂的话涉及的东西就多了,那俺就没兴趣了,人工智能(好恐怖),俺只喜欢简单的东西。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

정규 표현식은 프로그래밍의 패턴 일치 및 텍스트 조작을위한 강력한 도구이며 다양한 응용 프로그램에서 텍스트 처리의 효율성을 높입니다.

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

파이썬에서 문자열을 통해 객체를 동적으로 생성하고 메소드를 호출하는 방법은 무엇입니까? 특히 구성 또는 실행 해야하는 경우 일반적인 프로그래밍 요구 사항입니다.
