python通过文件头判断文件类型
对于提供上传的服务器,需要对上传的文件进行过滤。
本文为大家提供了python通过文件头判断文件类型的方法,避免不必要的麻烦。
分享代码如下
import struct # 支持文件类型 # 用16进制字符串的目的是可以知道文件头是多少字节 # 各种文件头的长度不一样,少半2字符,长则8字符 def typeList(): return { "52617221": EXT_RAR, "504B0304": EXT_ZIP} # 字节码转16进制字符串 def bytes2hex(bytes): num = len(bytes) hexstr = u"" for i in range(num): t = u"%x" % bytes[i] if len(t) % 2: hexstr += u"0" hexstr += t return hexstr.upper() # 获取文件类型 def filetype(filename): binfile = open(filename, 'rb') # 必需二制字读取 tl = typeList() ftype = 'unknown' for hcode in tl.keys(): numOfBytes = len(hcode) / 2 # 需要读多少字节 binfile.seek(0) # 每次读取都要回到文件头,不然会一直往后读取 hbytes = struct.unpack_from("B"*numOfBytes, binfile.read(numOfBytes)) # 一个 "B"表示一个字节 f_hcode = bytes2hex(hbytes) if f_hcode == hcode: ftype = tl[hcode] break binfile.close() return ftype if __name__ == '__main__': print filetype(Your-file-path)
常见文件格式的文件头
文件格式 文件头(十六进制)
JPEG (jpg) FFD8FF
PNG (png) 89504E47
GIF (gif) 47494638
TIFF (tif) 49492A00
Windows Bitmap (bmp) 424D
CAD (dwg) 41433130
Adobe Photoshop (psd) 38425053
Rich Text Format (rtf) 7B5C727466
XML (xml) 3C3F786D6C
HTML (html) 68746D6C3E
Email [thorough only] (eml) 44656C69766572792D646174653A
Outlook Express (dbx) CFAD12FEC5FD746F
Outlook (pst) 2142444E
MS Word/Excel (xls.or.doc) D0CF11E0
MS Access (mdb) 5374616E64617264204A
以上就是本文的全部内容,希望对大家的学习有所帮助。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

이 기사는 프로젝트 종속성 관리 및 충돌을 피하는 데 중점을 둔 Python에서 가상 환경의 역할에 대해 설명합니다. 프로젝트 관리 개선 및 종속성 문제를 줄이는 데있어 생성, 활성화 및 이점을 자세히 설명합니다.

정규 표현식은 프로그래밍의 패턴 일치 및 텍스트 조작을위한 강력한 도구이며 다양한 응용 프로그램에서 텍스트 처리의 효율성을 높입니다.
