深入解析Python中的lambda表达式的用法
普通的数学运算用这个纯抽象的符号演算来定义,计算结果只能在脑子里存在。所以写了点代码,来验证文章中介绍的演算规则。
我们来验证文章里介绍的自然数及自然数运算规则。说到自然数,今天还百度了一下,据度娘说,1993年后国家规定0是属于自然数。先定义自然数及自然数的运算规则:
用lambda表达式定义自然数(邱齐数)
0 := λf.λx.x 1 := λf.λx.f x 2 := λf.λx.f (f x) 3 := λf.λx.f (f (f x)) ...
上面定义直观的意思就是数字n, 是f(x)的n阶函数。1就是f(x), 2就是f(f(x))....,严格来说,这样表述并不准确。其实每个邱奇数都是一个二阶函数,它有两个变量f和x。用二元命名函数来表达就是:
0 -> num0(f,x)=x 1 -> num1(f, x)=f(x) 2 -> num2(f,x)=f(f(x)) 3 -> num3(f,x)=f(f(f(x))) ...
其中参数f是一个函数。这一段有点绕,但是不能理解这个,对后面的lambda演算理解会比较困难。
首先用递归法,定义邱齐数(自然数)
0是自然数, 度娘说1993年后,国家规定0是属于自然数。
每个自然数,都有一个后续。
用代码表达就是:
NUM0=lambda f: lambda x:x SUCC=lambda n: lambda f: lambda x: f(n(f)(x))
后面则是定义运算符,包括加法,乘法,减法和幂。维基文章里没有介绍除法,估摸着除法定义比较复杂,一时讲不清楚。那我们也不验证了。
################################################ #define number calculus rules ################################################ #define Church numeral inductively. #0 := λf.λx.x #1 := λf.λx.f x #2 := λf.λx.f (f x) #3 := λf.λx.f (f (f x)) #... NUM0=lambda f: lambda x:x SUCC=lambda n: lambda f: lambda x: f(n(f)(x)) #define Operator PLUS=lambda m: lambda n: m(SUCC)(n) MULT= lambda m: lambda n: m(PLUS(n))(NUM0) #define predecessor to obtain the previous number. PRED= lambda n: lambda f: lambda x: n(lambda g: lambda h: h(g(f)))(lambda u:x)(lambda u:u) SUB=lambda m: lambda n: n(PRED)(m) POW=lambda b: lambda e: e(b)
定义完了什么是自然数和自然数的运算子。那么自然数的运算,就可以用lambda演算的方式计算了。
问题是上面的定义都是抽象的符号演算,我们需要有一个编码器来把上面的抽象的Church numeral符号编码成可以人来阅读的形式,还需把人输入的数字解码成抽象符号。
################################################ #create encoder to input/output Church numeral ################################################ class LambdaEncoding: @staticmethod def encoding(exp,encoder): return encoder().encoding(exp) @staticmethod def decoding(s, decoder): return decoder().decoding(s) class NumEncoder: def encoding(self,num): f=lambda x:x+1 return str(num(f)(0)) def decoding(self,s): n=int(s) num=NUM0 for i in range(n): num=SUCC(num) return num
嗯,有了编码器,就可以方便的来验证了。
################################################ #calculus demo ################################################ print("demo number calculus.\n" "don't input large number," "it will cause to exceed maximum recursion depth!\n") n1=input('input a number: ') n2=input('input anohter number: ') #decode string to Church numeral num1=LambdaEncoding.decoding(n1,NumEncoder) num2=LambdaEncoding.decoding(n2,NumEncoder) #add result=PLUS(num1)(num2) print('{0} + {1} = {2}'.format( n1, n2, LambdaEncoding.encoding(result, NumEncoder))) #mult result=MULT(num1)(num2) print('{0} X {1} = {2}'.format( n1, n2, LambdaEncoding.encoding(result, NumEncoder))) #sub result=SUB(num1)(num2) print('{0} - {1} = {2}'.format( n1, n2, LambdaEncoding.encoding(result, NumEncoder))) #POW result=POW(num1)(num2) print('{0} ^ {1} = {2}'.format( n1, n2, LambdaEncoding.encoding(result, NumEncoder)))
测试结果如下:
>>> demo number calculus. don't input large number,it will cause to exceed maximum recursion depth! input a number: 4 input anohter number: 3 4 + 3 = 7 4 X 3 = 12 4 - 3 = 1 4 ^ 3 = 64 >>>
神奇吧。
lambda和def的区别
python lambda是在python中使用lambda来创建匿名函数,而用def创建的方法是有名称的,除了从表面上的方法名不一样外,python lambda还有哪些和def不一样呢?
1 python lambda会创建一个函数对象,但不会把这个函数对象赋给一个标识符,而def则会把函数对象赋值给一个变量。
2 python lambda它只是一个表达式,而def则是一个语句。
下面是python lambda的格式,看起来好精简阿。
lambda x: print x
如果你在python 列表解析里用到python lambda,我感觉意义不是很大,因为python lambda它会创建一个函数对象,但马上又给丢弃了,因为你没有使用它的返回值,即那个函数对象。也正是由于lambda只是一个表达式,它可以直接作为python 列表或python 字典的成员,比如:
info = [lamba a: a**3, lambda b: b**3]
在这个地方没有办法用def语句直接代替。因为def是语句,不是表达式不能嵌套在里面,lambda表达式在“:”后只能有一个表达式。也就是说,在def中,用return可以返回的也可以放在lambda后面,不能用return返回的也不能定义在python lambda后面。因此,像if或for或print这种语句就不能用于lambda中,lambda一般只用来定义简单的函数。
下面举几个python lambda的例子吧
1单个参数的:
g = lambda x:x*2 print g(3)
结果是6
多个参数的:
m = lambda x,y,z: (x-y)*z print m(3,1,2)
结果是4

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

VS Code는 Full Name Visual Studio Code로, Microsoft가 개발 한 무료 및 오픈 소스 크로스 플랫폼 코드 편집기 및 개발 환경입니다. 광범위한 프로그래밍 언어를 지원하고 구문 강조 표시, 코드 자동 완료, 코드 스 니펫 및 스마트 프롬프트를 제공하여 개발 효율성을 향상시킵니다. 풍부한 확장 생태계를 통해 사용자는 디버거, 코드 서식 도구 및 GIT 통합과 같은 특정 요구 및 언어에 확장을 추가 할 수 있습니다. VS 코드에는 코드에서 버그를 신속하게 찾아서 해결하는 데 도움이되는 직관적 인 디버거도 포함되어 있습니다.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.
