Python的迭代器和生成器
先说迭代器,对于string、list、dict、tuple等这类容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数,iter()是python的内置函数。iter()会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内元素,next()也是python的内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。比如:
>>> s = 'abc' >>> it = iter(s) >>> it <str_iterator object at 0x7f71fefe9d68> >>> next(it) 'a' >>> next(it) 'b' >>> next(it) 'c' >>> next(it) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
上面说的都是python自带的容器对象,它们都实现了相应的迭代器方法,那如果是自定义类需要遍历怎么办?方法很简单,对这个类AClass,实现一个__iter__(self)方法,使其返回一个带有__next__(self)方法的对象就可以了。如果你在AClass刚好也定义了__next__(self)方法(一般使用迭代器都会定义),那在__iter__里只要返回self就可以。废话少说,先上代码:
class Fib(object): def __init__(self, max): super(Fib, self).__init__() self.max = max def __iter__(self): self.a = 0 self.b = 1 return self def __next__(self): fib = self.a if fib > self.max: raise StopIteration self.a, self.b = self.b, self.a + self.b return fib def main(): fib = Fib(100) for i in fib: print(i) if __name__ == '__main__': main()
简单讲下代码会干什么,定义了一个Fib类,用于生成fibonacci序列。用for遍历时会逐个打印生成的fibonacci数,max是生成的fibonacci序列中数字大小的上限。
在类的实现中,定义了一个__iter__(self)方法,这个方法是在遍历时被iter()调用,返回一个迭代器。因为在遍历的时候,是直接调用的python内置函数iter(),由iter()通过调用__iter__(self)获得对象的迭代器。有了迭代器,就可以逐个遍历元素了。而逐个遍历的时候,也是使用内置的next()函数通过调用对象的__next__(self)方法对迭代器对象进行遍历。所以要实现__iter__(self)和__next__(self)。而且因为实现了__next__(self),所以在实现__iter__(self)的时候,直接返回self就可以。
为了更好理解,我再简单重复下上面说的那一段:在循环遍历自定义容器对象时,会使用python内置函数iter()调用遍历对象的__iter__(self)获得一个迭代器,之后再循环对这个迭代器使用next()调用迭代器对象的__next__(self)。__iter__只会被调用一次,而__next__会被调用 n 次。
下面说生成器。
生成器(Generator)是创建迭代器的简单而强大的工具。它们写起来就像是正规的函数,只是在需要返回数据的时候使用yield语句。每次next()被调用时,生成器会返回它脱离的位置(它记忆语句最后一次执行的位置和所有的数据值)。以下示例演示了生成器可以很简单的创建出来:
>>> def reverse(data): ... for index in range(len(data)-1, -1, -1): ... yield data[index] ... >>> for char in reverse('hello'): ... print(char) ... o l l e h
关于迭代器和生成器的区别,生成器能做到迭代器能做的所有事,而且因为自动创建了__iter__()和 next()方法,生成器显得特别简洁,而且生成器也是高效的。除了创建和保存程序状态的自动方法,当发生器终结时,还会自动抛出StopIteration异常。一个带有yield的函数就是一个 生成器,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用next()(在 for 循环中会自动调用next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个yield语句就会中断,并返回一个迭代值,下次执行时从yield的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被yield中断了数次,每次中断都会通过yield返回当前的迭代值(yield暂停一个函数,next()从其暂停处恢复其运行)。
另外对于生成器,python还提供了一个生成器表达式:类似与一个yield值的匿名函数。表达式本身看起来像列表推到, 但不是用方括号而是用圆括号包围起来:
>>> unique_characters = {'E', 'D', 'M', 'O', 'N', 'S', 'R', 'Y'} >>> gen = (ord(c) for c in unique_characters) >>> gen <generator object <genexpr> at 0x7f2be4668678> >>> for i in gen: ... print(i) ... 69 79 83 77 82 78 89 68 >>>
如果需要,可以将生成器表达式传给tuple、list或是set来迭代所有的值并且返回元组、列表或是集合。在这种情况下,不需要一对额外的括号 ———— 直接将生成器表达式 ord(c) for c in unique_characters传给tuple()等函数就可以了, Python 会推断出它是一个生成器表达式。
最后,为什么要使用生成器?因为效率。使用生成器表达式取代列表解析可以同时节省 cpu 和 内存(ram)。如果你构造一个列表的目的仅仅是传递给别的函数,(比如 传递给tuple()或者set()), 那就用生成器表达式替代吧!
以上所述就是本文的全部内容了,希望大家能够喜欢。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 기사는 데비안 시스템에서 Apache Logs를 분석하여 웹 사이트 성능을 향상시키는 방법을 설명합니다. 1. 로그 분석 기본 사항 Apache Log는 IP 주소, 타임 스탬프, 요청 URL, HTTP 메소드 및 응답 코드를 포함한 모든 HTTP 요청의 자세한 정보를 기록합니다. 데비안 시스템 에서이 로그는 일반적으로 /var/log/apache2/access.log 및 /var/log/apache2/error.log 디렉토리에 있습니다. 로그 구조를 이해하는 것은 효과적인 분석의 첫 번째 단계입니다. 2. 로그 분석 도구 다양한 도구를 사용하여 Apache 로그를 분석 할 수 있습니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

이 기사에서는 DDOS 공격 탐지 방법에 대해 설명합니다. "Debiansniffer"의 직접적인 적용 사례는 발견되지 않았지만 DDOS 공격 탐지에 다음과 같은 방법을 사용할 수 있습니다. 효과적인 DDOS 공격 탐지 기술 : 트래픽 분석을 기반으로 한 탐지 : 갑작스런 트래픽 성장, 특정 포트에서의 연결 감지 등의 비정상적인 네트워크 트래픽 패턴을 모니터링하여 DDOS 공격을 식별합니다. 예를 들어, Pyshark 및 Colorama 라이브러리와 결합 된 Python 스크립트는 실시간으로 네트워크 트래픽을 모니터링하고 경고를 발행 할 수 있습니다. 통계 분석에 기반한 탐지 : 데이터와 같은 네트워크 트래픽의 통계적 특성을 분석하여

이 기사에서는 Debian 시스템에서 NginxSSL 인증서를 업데이트하는 방법에 대해 안내합니다. 1 단계 : CertBot을 먼저 설치하십시오. 시스템에 CERTBOT 및 PYTHON3-CERTBOT-NGINX 패키지가 설치되어 있는지 확인하십시오. 설치되지 않은 경우 다음 명령을 실행하십시오. sudoapt-getupdatesudoapt-getinstallcertbotpython3-certbot-nginx 2 단계 : 인증서 획득 및 구성 rectbot 명령을 사용하여 nginx를 획득하고 nginx를 구성하십시오.

데비안 시스템의 readdir 함수는 디렉토리 컨텐츠를 읽는 데 사용되는 시스템 호출이며 종종 C 프로그래밍에 사용됩니다. 이 기사에서는 ReadDir를 다른 도구와 통합하여 기능을 향상시키는 방법을 설명합니다. 방법 1 : C 언어 프로그램을 파이프 라인과 결합하고 먼저 C 프로그램을 작성하여 readDir 함수를 호출하고 결과를 출력하십시오.#포함#포함#포함#포함#includinTmain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

데비안 시스템에서 HTTPS 서버를 구성하려면 필요한 소프트웨어 설치, SSL 인증서 생성 및 SSL 인증서를 사용하기 위해 웹 서버 (예 : Apache 또는 Nginx)를 구성하는 등 여러 단계가 포함됩니다. 다음은 Apacheweb 서버를 사용하고 있다고 가정하는 기본 안내서입니다. 1. 필요한 소프트웨어를 먼저 설치하고 시스템이 최신 상태인지 확인하고 Apache 및 OpenSSL을 설치하십시오 : Sudoaptupdatesudoaptupgradesudoaptinsta
