백엔드 개발 파이썬 튜토리얼 通过数据库向Django模型添加字段的示例

通过数据库向Django模型添加字段的示例

Jun 10, 2016 pm 03:09 PM
django 모델

首先借用书本(book)的这个数据模型:

from django.db import models

class Publisher(models.Model):
  name = models.CharField(max_length=30)
  address = models.CharField(max_length=50)
  city = models.CharField(max_length=60)
  state_province = models.CharField(max_length=30)
  country = models.CharField(max_length=50)
  website = models.URLField()

  def __unicode__(self):
    return self.name

class Author(models.Model):
  first_name = models.CharField(max_length=30)
  last_name = models.CharField(max_length=40)
  email = models.EmailField()

  def __unicode__(self):
    return u'%s %s' % (self.first_name, self.last_name)

class Book(models.Model):
  title = models.CharField(max_length=100)
  authors = models.ManyToManyField(Author)
  publisher = models.ForeignKey(Publisher)
  publication_date = models.DateField()

  def __unicode__(self):
    return self.title

로그인 후 복사


添加字段
当要向一个产品设置表(或者说是model)添加一个字段的时候,要使用的技巧是利用Django不关心表里是否包含model里所没有的列的特性。 策略就是现在数据库里加入字段,然后同步Django的模型以包含新字段。

然而 这里有一个鸡生蛋蛋生鸡的问题 ,由于要想了解新增列的SQL语句,你需要使用Django的 manage.py sqlall命令进行查看 ,而这又需要字段已经在模型里存在了。 (注意:你并 不是非得使用与Django相同的SQL语句创建新的字段,但是这样做确实是一个好主意 ,它能让一切都保持同步。)

这个鸡-蛋的问题的解决方法是在开发者环境里而不是发布环境里实现这个变化。 (你正使用的是测试/开发环境,对吧?)下面是具体的实施步骤。

首先,进入开发环境(也就是说,不是在发布环境里):

在你的模型里添加字段。

运行 manage.py sqlall [yourapp] 来测试模型新的 CREATE TABLE 语句。 注意为新字段的列定义。

开启你的数据库的交互命令界面(比如, psql 或mysql , 或者可以使用 manage.py dbshell )。 执行 ALTER TABLE 语句来添加新列。

使用Python的manage.py shell,通过导入模型和选中表单(例如, MyModel.objects.all()[:5] )来验证新的字段是否被正确的添加 ,如果一切顺利,所有的语句都不会报错。

然后在你的产品服务器上再实施一遍这些步骤。

启动数据库的交互界面。

执行在开发环境步骤中,第三步的ALTER TABLE语句。

将新的字段加入到模型中。 如果你使用了某种版本控制工具,并且在第一步中,已经提交了你在开发环境上的修改,现在,可以在生产环境中更新你的代码了(例如,如果你使用Subversion,执行svn update。

重新启动Web server,使修改生效。

让我们实践下,比如添加一个num_pages字段到第五章中Book模型。首先,我们会把开发环境中的模型改成如下形式:

class Book(models.Model):
  title = models.CharField(max_length=100)
  authors = models.ManyToManyField(Author)
  publisher = models.ForeignKey(Publisher)
  publication_date = models.DateField()
  **num_pages = models.IntegerField(blank=True, null=True)**

  def __unicode__(self):
    return self.title

로그인 후 복사


然后,我们运行命令manage.py sqlall books 来查看CREATE TABLE语句。 语句的具体内容取决与你所使用的数据库, 大概是这个样子:

CREATE TABLE "books_book" (
  "id" serial NOT NULL PRIMARY KEY,
  "title" varchar(100) NOT NULL,
  "publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id"),
  "publication_date" date NOT NULL,
  "num_pages" integer NULL
);

로그인 후 복사

新加的字段被这样表示:

"num_pages" integer NULL

로그인 후 복사

接下来,我们要在开发环境上运行数据库客户端,如果是PostgreSQL,运行 psql,,然后,我执行如下语句。

ALTER TABLE books_book ADD COLUMN num_pages integer;

로그인 후 복사

添加 非NULL 字段

这里有个微妙之处值得一提。 在我们添加字段num_pages的时候,我们使用了 blank=True 和 null=True 选项。 这是因为在我们第一次创建它的时候,这个数据库字段会含有空值。

然而,想要添加不能含有空值的字段也是可以的。 要想实现这样的效果,你必须先创建 NULL 型的字段,然后将该字段的值填充为某个默认值,然后再将该字段改为 NOT NULL 型。 例如:

BEGIN;
ALTER TABLE books_book ADD COLUMN num_pages integer;
UPDATE books_book SET num_pages=0;
ALTER TABLE books_book ALTER COLUMN num_pages SET NOT NULL;
COMMIT;

로그인 후 복사

如果你这样做,记得你不要在模型中添加 blank=True 和 null=True 选项。

执行ALTER TABLE之后,我们要验证一下修改结果是否正确。启动python并执行下面的代码:

>>> from mysite.books.models import Book
>>> Book.objects.all()[:5]

로그인 후 복사

如果没有异常发生,我们将切换到生产服务器,然后在生产环境的数据库中执行命令ALTER TABLE 然后我们更新生产环境中的模型,最后重启web服务器。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. May 07, 2024 pm 04:13 PM

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | Apr 09, 2024 am 11:52 AM

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. Jun 01, 2024 pm 10:03 PM

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Apr 01, 2024 pm 07:46 PM

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! 공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! May 06, 2024 pm 04:13 PM

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

FisheyeDetNet: 어안 카메라를 기반으로 한 최초의 표적 탐지 알고리즘 FisheyeDetNet: 어안 카메라를 기반으로 한 최초의 표적 탐지 알고리즘 Apr 26, 2024 am 11:37 AM

표적 탐지는 자율주행 시스템에서 상대적으로 성숙한 문제이며, 그 중 보행자 탐지는 가장 먼저 배포되는 알고리즘 중 하나입니다. 대부분의 논문에서 매우 포괄적인 연구가 수행되었습니다. 그러나 서라운드 뷰를 위한 어안 카메라를 사용한 거리 인식은 상대적으로 덜 연구되었습니다. 큰 방사형 왜곡으로 인해 표준 경계 상자 표현은 어안 카메라에서 구현하기 어렵습니다. 위의 설명을 완화하기 위해 확장된 경계 상자, 타원 및 일반 다각형 디자인을 극/각 표현으로 탐색하고 인스턴스 분할 mIOU 메트릭을 정의하여 이러한 표현을 분석합니다. 제안된 다각형 형태의 모델 fisheyeDetNet은 다른 모델보다 성능이 뛰어나며 동시에 자율 주행을 위한 Valeo fisheye 카메라 데이터 세트에서 49.5% mAP를 달성합니다.

DualBEV: BEVFormer 및 BEVDet4D를 크게 능가하는 책을 펼치세요! DualBEV: BEVFormer 및 BEVDet4D를 크게 능가하는 책을 펼치세요! Mar 21, 2024 pm 05:21 PM

본 논문에서는 자율 주행에서 다양한 시야각(예: 원근 및 조감도)에서 객체를 정확하게 감지하는 문제, 특히 원근(PV) 공간에서 조감(BEV) 공간으로 기능을 효과적으로 변환하는 방법을 탐구합니다. VT(Visual Transformation) 모듈을 통해 구현됩니다. 기존 방법은 크게 2D에서 3D로, 3D에서 2D로 변환하는 두 가지 전략으로 나뉩니다. 2D에서 3D로의 방법은 깊이 확률을 예측하여 조밀한 2D 특징을 개선하지만, 특히 먼 영역에서는 깊이 예측의 본질적인 불확실성으로 인해 부정확성이 발생할 수 있습니다. 3D에서 2D로의 방법은 일반적으로 3D 쿼리를 사용하여 2D 기능을 샘플링하고 Transformer를 통해 3D와 2D 기능 간의 대응에 대한 주의 가중치를 학습하므로 계산 및 배포 시간이 늘어납니다.

See all articles