Python中正则表达式的详细教程
1.了解正则表达式
正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。
正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。
正则表达式的大致匹配过程是:
1.依次拿出表达式和文本中的字符比较,
2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。
3.如果表达式中有量词或边界,这个过程会稍微有一些不同。
2.正则表达式的语法规则
下面是Python中正则表达式的一些匹配规则,图片资料来自CSDN
3.正则表达式相关注解
(1)数量词的贪婪模式与非贪婪模式
正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字 符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量 词”ab*?”,将找到”a”。
注:我们一般使用非贪婪模式来提取。
(2)反斜杠问题
与大多数编程语言相 同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反 斜杠”\\\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。
Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\\”表示。同样,匹配一个数字的”\\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。
4.Python Re模块
Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下
#返回pattern对象 re.compile(string[,flag]) #以下为匹配所用函数 re.match(pattern, string[, flags]) re.search(pattern, string[, flags]) re.split(pattern, string[, maxsplit]) re.findall(pattern, string[, flags]) re.finditer(pattern, string[, flags]) re.sub(pattern, repl, string[, count]) re.subn(pattern, repl, string[, count])
在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如
pattern = re.compile(r'hello')
在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。
另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:
参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。
可选值有:
- ? re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
- ? re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
- ? re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为
- ? re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
- ? re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
- ? re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。
在刚才所说的另外几个方法例如 re.match 里我们就需要用到这个pattern了,下面我们一一介绍。
注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。
(1)re.match(pattern, string[, flags])
这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回 None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对 string向后匹配。下面我们通过一个例子理解一下
__author__ = 'CQC' # -*- coding: utf-8 -*- #导入re模块 import re # 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串” pattern = re.compile(r'hello') # 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None result1 = re.match(pattern,'hello') result2 = re.match(pattern,'helloo CQC!') result3 = re.match(pattern,'helo CQC!') result4 = re.match(pattern,'hello CQC!') #如果1匹配成功 if result1: # 使用Match获得分组信息 print result1.group() else: print '1匹配失败!' #如果2匹配成功 if result2: # 使用Match获得分组信息 print result2.group() else: print '2匹配失败!' #如果3匹配成功 if result3: # 使用Match获得分组信息 print result3.group() else: print '3匹配失败!' #如果4匹配成功 if result4: # 使用Match获得分组信息 print result4.group() else: print '4匹配失败!'
运行结果
hello hello 3匹配失败! hello
匹配分析
1.第一个匹配,pattern正则表达式为'hello',我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。
2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。
3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o' 时无法完成匹配,匹配终止,返回None
4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。
我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
属性:
1.string: 匹配时使用的文本。
2.re: 匹配时使用的Pattern对象。
3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
1.group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
2.groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
3.groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
4.start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
5.end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
6.span([group]):
返回(start(group), end(group))。
7.expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g0。
下面我们用一个例子来体会一下
# -*- coding: utf-8 -*- #一个简单的match实例 import re # 匹配如下内容:单词+空格+单词+任意字符 m = re.match(r'(\w+) (\w+)(?P.*)', 'hello world!') print "m.string:", m.string print "m.re:", m.re print "m.pos:", m.pos print "m.endpos:", m.endpos print "m.lastindex:", m.lastindex print "m.lastgroup:", m.lastgroup print "m.group():", m.group() print "m.group(1,2):", m.group(1, 2) print "m.groups():", m.groups() print "m.groupdict():", m.groupdict() print "m.start(2):", m.start(2) print "m.end(2):", m.end(2) print "m.span(2):", m.span(2) print r"m.expand(r'\g \g\g'):", m.expand(r'\2 \1\3') ### output ### # m.string: hello world! # m.re: # m.pos: 0 # m.endpos: 12 # m.lastindex: 3 # m.lastgroup: sign # m.group(1,2): ('hello', 'world') # m.groups(): ('hello', 'world', '!') # m.groupdict(): {'sign': '!'} # m.start(2): 6 # m.end(2): 11 # m.span(2): (6, 11) # m.expand(r'\2 \1\3'): world hello!
(2)re.search(pattern, string[, flags])
search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下
#导入re模块 import re # 将正则表达式编译成Pattern对象 pattern = re.compile(r'world') # 使用search()查找匹配的子串,不存在能匹配的子串时将返回None # 这个例子中使用match()无法成功匹配 match = re.search(pattern,'hello world!') if match: # 使用Match获得分组信息 print match.group() ### 输出 ### # world
(3)re.split(pattern, string[, maxsplit])
按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。
import re pattern = re.compile(r'\d+') print re.split(pattern,'one1two2three3four4') ### 输出 ### # ['one', 'two', 'three', 'four', '']
(4)re.findall(pattern, string[, flags])
搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下 import re pattern = re.compile(r'\d+') print re.findall(pattern,'one1two2three3four4') ### 输出 ### # ['1', '2', '3', '4']
(5)re.finditer(pattern, string[, flags])
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下
import re pattern = re.compile(r'\d+') for m in re.finditer(pattern,'one1two2three3four4'): print m.group(), ### 输出 ### # 1 2 3 4
(6)re.sub(pattern, repl, string[, count])
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。
import re pattern = re.compile(r'(\w+) (\w+)') s = 'i say, hello world!' print re.sub(pattern,r'\2 \1', s) def func(m): return m.group(1).title() + ' ' + m.group(2).title() print re.sub(pattern,func, s) ### output ### # say i, world hello! # I Say, Hello World!
(7)re.subn(pattern, repl, string[, count])
返回 (sub(repl, string[, count]), 替换次数)。
import re pattern = re.compile(r'(\w+) (\w+)') s = 'i say, hello world!' print re.subn(pattern,r'\2 \1', s) def func(m): return m.group(1).title() + ' ' + m.group(2).title() print re.subn(pattern,func, s) ### output ### # ('say i, world hello!', 2) # ('I Say, Hello World!', 2)
5.Python Re模块的另一种使用方式
在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样 调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。
函数API列表
match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]) search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]) split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]) findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]) finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]) sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]) subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])
具体的调用方法不必详说了,原理都类似,只是参数的变化不同。小伙伴们尝试一下吧~
小伙伴们加油,即使这一节看得云里雾里的也没关系,接下来我们会通过一些实战例子来帮助大家熟练掌握正则表达式的。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











대부분의 텍스트 편집기를 사용하여 XML 파일을여십시오. 보다 직관적 인 트리 디스플레이가 필요한 경우 Oxygen XML 편집기 또는 XMLSPy와 같은 XML 편집기를 사용할 수 있습니다. 프로그램에서 XML 데이터를 처리하는 경우 프로그래밍 언어 (예 : Python) 및 XML 라이브러 (예 : XML.etree.elementtree)를 사용하여 구문 분석해야합니다.

XML 미화는 합리적인 압입, 라인 브레이크 및 태그 구성을 포함하여 기본적으로 가독성을 향상시키고 있습니다. 원칙은 XML 트리를 가로 지르고 레벨에 따라 들여 쓰기를 추가하고 텍스트가 포함 된 빈 태그와 태그를 처리하는 것입니다. Python의 xml.etree.elementtree 라이브러리는 위의 미화 프로세스를 구현할 수있는 편리한 Pretty_XML () 기능을 제공합니다.

XML 컨텐츠를 수정하려면 프로그래밍이 필요합니다. 대상 노드를 추가, 삭제, 수정 및 확인하려면 정확한 찾기가 필요하기 때문입니다. 프로그래밍 언어에는 XML을 처리하기위한 해당 라이브러리가 있으며 운영 데이터베이스와 같이 안전하고 효율적이며 제어 가능한 작업을 수행 할 수있는 API를 제공합니다.

모바일에는 간단하고 직접 무료 XML에서 PDF 툴이 없습니다. 필요한 데이터 시각화 프로세스에는 복잡한 데이터 이해 및 렌더링이 포함되며 시장에있는 소위 "무료"도구의 대부분은 경험이 좋지 않습니다. 컴퓨터 측 도구를 사용하거나 클라우드 서비스를 사용하거나보다 신뢰할 수있는 전환 효과를 얻기 위해 앱을 개발하는 것이 좋습니다.

모바일 XML에서 PDF의 속도는 다음 요인에 따라 다릅니다. XML 구조의 복잡성. 모바일 하드웨어 구성 변환 방법 (라이브러리, 알고리즘) 코드 품질 최적화 방법 (효율적인 라이브러리 선택, 알고리즘 최적화, 캐시 데이터 및 다중 스레딩 사용). 전반적으로 절대적인 답변은 없으며 특정 상황에 따라 최적화해야합니다.

휴대 전화에서 XML을 PDF로 직접 변환하는 것은 쉽지 않지만 클라우드 서비스를 통해 달성 할 수 있습니다. 가벼운 모바일 앱을 사용하여 XML 파일을 업로드하고 생성 된 PDF를 수신하고 클라우드 API로 변환하는 것이 좋습니다. Cloud API는 Serverless Computing Services를 사용하고 올바른 플랫폼을 선택하는 것이 중요합니다. XML 구문 분석 및 PDF 생성을 처리 할 때 복잡성, 오류 처리, 보안 및 최적화 전략을 고려해야합니다. 전체 프로세스에는 프론트 엔드 앱과 백엔드 API가 함께 작동해야하며 다양한 기술에 대한 이해가 필요합니다.

XML을 PDF로 직접 변환하는 응용 프로그램은 근본적으로 다른 두 형식이므로 찾을 수 없습니다. XML은 데이터를 저장하는 데 사용되는 반면 PDF는 문서를 표시하는 데 사용됩니다. 변환을 완료하려면 Python 및 ReportLab과 같은 프로그래밍 언어 및 라이브러리를 사용하여 XML 데이터를 구문 분석하고 PDF 문서를 생성 할 수 있습니다.

XML 서식 도구는 규칙에 따라 코드를 입력하여 가독성과 이해를 향상시킬 수 있습니다. 도구를 선택할 때는 사용자 정의 기능, 특수 상황 처리, 성능 및 사용 편의성에주의하십시오. 일반적으로 사용되는 도구 유형에는 온라인 도구, IDE 플러그인 및 명령 줄 도구가 포함됩니다.
