Python性能优化的20条建议
优化算法时间复杂度
算法的时间复杂度对程序的执行效率影响最大,在Python中可以通过选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同的场景有不同的优化方式,总得来说,一般有分治,分支界限,贪心,动态规划等思想。
减少冗余数据
如用上三角或下三角的方式去保存一个大的对称矩阵。在0元素占大多数的矩阵里使用稀疏矩阵表示。
合理使用copy与deepcopy
对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用copy包里的copy和deepcopy,这两个函数的不同之处在于后者是递归复制的。效率也不一样:(以下程序在ipython中运行)
import copy a = range(100000) %timeit -n 10 copy.copy(a) # 运行10次 copy.copy(a) %timeit -n 10 copy.deepcopy(a) 10 loops, best of 3: 1.55 ms per loop 10 loops, best of 3: 151 ms per loop
timeit后面的-n表示运行的次数,后两行对应的是两个timeit的输出,下同。由此可见后者慢一个数量级。
使用dict或set查找元素
python dict和set都是使用hash表来实现(类似c++11标准库中unordered_map),查找元素的时间复杂度是O(1)
a = range(1000) s = set(a) d = dict((i,1) for i in a) %timeit -n 10000 100 in d %timeit -n 10000 100 in s 10000 loops, best of 3: 43.5 ns per loop 10000 loops, best of 3: 49.6 ns per loop
dict的效率略高(占用的空间也多一些)。
合理使用生成器(generator)和yield
%timeit -n 100 a = (i for i in range(100000)) %timeit -n 100 b = [i for i in range(100000)] 100 loops, best of 3: 1.54 ms per loop 100 loops, best of 3: 4.56 ms per loop
使用()得到的是一个generator对象,所需要的内存空间与列表的大小无关,所以效率会高一些。在具体应用上,比如set(i for i in range(100000))会比set([i for i in range(100000)])快。
但是对于需要循环遍历的情况:
%timeit -n 10 for x in (i for i in range(100000)): pass %timeit -n 10 for x in [i for i in range(100000)]: pass 10 loops, best of 3: 6.51 ms per loop 10 loops, best of 3: 5.54 ms per loop
后者的效率反而更高,但是如果循环里有break,用generator的好处是显而易见的。yield也是用于创建generator:
def yield_func(ls): for i in ls: yield i+1 def not_yield_func(ls): return [i+1 for i in ls] ls = range(1000000) %timeit -n 10 for i in yield_func(ls):pass %timeit -n 10 for i in not_yield_func(ls):pass 10 loops, best of 3: 63.8 ms per loop 10 loops, best of 3: 62.9 ms per loop
对于内存不是非常大的list,可以直接返回一个list,但是可读性yield更佳(人个喜好)。
python2.x内置generator功能的有xrange函数、itertools包等。
优化循环
循环之外能做的事不要放在循环内,比如下面的优化可以快一倍:
a = range(10000) size_a = len(a) %timeit -n 1000 for i in a: k = len(a) %timeit -n 1000 for i in a: k = size_a 1000 loops, best of 3: 569 µs per loop 1000 loops, best of 3: 256 µs per loop
优化包含多个判断表达式的顺序
对于and,应该把满足条件少的放在前面,对于or,把满足条件多的放在前面。如:
a = range(2000) %timeit -n 100 [i for i in a if 10 < i < 20 or 1000 < i < 2000] %timeit -n 100 [i for i in a if 1000 < i < 2000 or 100 < i < 20] %timeit -n 100 [i for i in a if i % 2 == 0 and i > 1900] %timeit -n 100 [i for i in a if i > 1900 and i % 2 == 0] 100 loops, best of 3: 287 µs per loop 100 loops, best of 3: 214 µs per loop 100 loops, best of 3: 128 µs per loop 100 loops, best of 3: 56.1 µs per loop
使用join合并迭代器中的字符串
In [1]: %%timeit ...: s = '' ...: for i in a: ...: s += i ...: 10000 loops, best of 3: 59.8 µs per loop In [2]: %%timeit s = ''.join(a) ...: 100000 loops, best of 3: 11.8 µs per loop
join对于累加的方式,有大约5倍的提升。
选择合适的格式化字符方式
s1, s2 = 'ax', 'bx' %timeit -n 100000 'abc%s%s' % (s1, s2) %timeit -n 100000 'abc{0}{1}'.format(s1, s2) %timeit -n 100000 'abc' + s1 + s2 100000 loops, best of 3: 183 ns per loop 100000 loops, best of 3: 169 ns per loop 100000 loops, best of 3: 103 ns per loop
三种情况中,%的方式是最慢的,但是三者的差距并不大(都非常快)。(个人觉得%的可读性最好)
不借助中间变量交换两个变量的值
In [3]: %%timeit -n 10000 a,b=1,2 ....: c=a;a=b;b=c; ....: 10000 loops, best of 3: 172 ns per loop In [4]: %%timeit -n 10000 a,b=1,2 a,b=b,a ....: 10000 loops, best of 3: 86 ns per loop
使用a,b=b,a而不是c=a;a=b;b=c;来交换a,b的值,可以快1倍以上。
使用if is
a = range(10000) %timeit -n 100 [i for i in a if i == True] %timeit -n 100 [i for i in a if i is True] 100 loops, best of 3: 531 µs per loop 100 loops, best of 3: 362 µs per loop
使用 if is True 比 if == True 将近快一倍。
使用级联比较x < y < z
x, y, z = 1,2,3 %timeit -n 1000000 if x < y < z:pass %timeit -n 1000000 if x < y and y < z:pass 1000000 loops, best of 3: 101 ns per loop 1000000 loops, best of 3: 121 ns per loop
x < y < z效率略高,而且可读性更好。
while 1 比 while True 更快
def while_1(): n = 100000 while 1: n -= 1 if n <= 0: break def while_true(): n = 100000 while True: n -= 1 if n <= 0: break m, n = 1000000, 1000000 %timeit -n 100 while_1() %timeit -n 100 while_true() 100 loops, best of 3: 3.69 ms per loop 100 loops, best of 3: 5.61 ms per loop
while 1 比 while true快很多,原因是在python2.x中,True是一个全局变量,而非关键字。
使用**而不是pow
%timeit -n 10000 c = pow(2,20) %timeit -n 10000 c = 2**20 10000 loops, best of 3: 284 ns per loop 10000 loops, best of 3: 16.9 ns per loop
**就是快10倍以上!
使用 cProfile, cStringIO 和 cPickle等用c实现相同功能(分别对应profile, StringIO, pickle)的包
import cPickle import pickle a = range(10000) %timeit -n 100 x = cPickle.dumps(a) %timeit -n 100 x = pickle.dumps(a) 100 loops, best of 3: 1.58 ms per loop 100 loops, best of 3: 17 ms per loop
由c实现的包,速度快10倍以上!
使用最佳的反序列化方式
下面比较了eval, cPickle, json方式三种对相应字符串反序列化的效率:
import json import cPickle a = range(10000) s1 = str(a) s2 = cPickle.dumps(a) s3 = json.dumps(a) %timeit -n 100 x = eval(s1) %timeit -n 100 x = cPickle.loads(s2) %timeit -n 100 x = json.loads(s3) 100 loops, best of 3: 16.8 ms per loop 100 loops, best of 3: 2.02 ms per loop 100 loops, best of 3: 798 µs per loop
可见json比cPickle快近3倍,比eval快20多倍。
使用C扩展(Extension)
目前主要有CPython(python最常见的实现的方式)原生API, ctypes,Cython,cffi三种方式,它们的作用是使得Python程序可以调用由C编译成的动态链接库,其特点分别是:
CPython原生API: 通过引入Python.h头文件,对应的C程序中可以直接使用Python的数据结构。实现过程相对繁琐,但是有比较大的适用范围。
ctypes: 通常用于封装(wrap)C程序,让纯Python程序调用动态链接库(Windows中的dll或Unix中的so文件)中的函数。如果想要在python中使用已经有C类库,使用ctypes是很好的选择,有一些基准测试下,python2+ctypes是性能最好的方式。
Cython: Cython是CPython的超集,用于简化编写C扩展的过程。Cython的优点是语法简洁,可以很好地兼容numpy等包含大量C扩展的库。Cython的使得场景一般是针对项目中某个算法或过程的优化。在某些测试中,可以有几百倍的性能提升。
cffi: cffi的就是ctypes在pypy(详见下文)中的实现,同进也兼容CPython。cffi提供了在python使用C类库的方式,可以直接在python代码中编写C代码,同时支持链接到已有的C类库。
使用这些优化方式一般是针对已有项目性能瓶颈模块的优化,可以在少量改动原有项目的情况下大幅度地提高整个程序的运行效率。
并行编程
因为GIL的存在,Python很难充分利用多核CPU的优势。但是,可以通过内置的模块multiprocessing实现下面几种并行模式:
多进程:对于CPU密集型的程序,可以使用multiprocessing的Process,Pool等封装好的类,通过多进程的方式实现并行计算。但是因为进程中的通信成本比较大,对于进程之间需要大量数据交互的程序效率未必有大的提高。
多线程:对于IO密集型的程序,multiprocessing.dummy模块使用multiprocessing的接口封装threading,使得多线程编程也变得非常轻松(比如可以使用Pool的map接口,简洁高效)。
分布式:multiprocessing中的Managers类提供了可以在不同进程之共享数据的方式,可以在此基础上开发出分布式的程序。
不同的业务场景可以选择其中的一种或几种的组合实现程序性能的优化。
终级大杀器:PyPy
PyPy是用RPython(CPython的子集)实现的Python,根据官网的基准测试数据,它比CPython实现的Python要快6倍以上。快的原因是使用了Just-in-Time(JIT)编译器,即动态编译器,与静态编译器(如gcc,javac等)不同,它是利用程序运行的过程的数据进行优化。由于历史原因,目前pypy中还保留着GIL,不过正在进行的STM项目试图将PyPy变成没有GIL的Python。
如果python程序中含有C扩展(非cffi的方式),JIT的优化效果会大打折扣,甚至比CPython慢(比Numpy)。所以在PyPy中最好用纯Python或使用cffi扩展。
随着STM,Numpy等项目的完善,相信PyPy将会替代CPython。
使用性能分析工具
除了上面在ipython使用到的timeit模块,还有cProfile。cProfile的使用方式也非常简单: python -m cProfile filename.py,filename.py 是要运行程序的文件名,可以在标准输出中看到每一个函数被调用的次数和运行的时间,从而找到程序的性能瓶颈,然后可以有针对性地优化。
参考
[1] http://www.ibm.com/developerworks/cn/linux/l-cn-python-optim/
[2] http://maxburstein.com/blog/speeding-up-your-python-code/
原文:http://segmentfault.com/blog/defool/1190000000666603

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











작업자 프로세스 수, 연결 풀 크기, GZIP 압축 및 HTTP/2 프로토콜을 활성화하고 캐시 및로드 밸런싱을 사용하여 NGINX 성능 튜닝을 달성 할 수 있습니다. 1. 작업자 프로세스 수 및 연결 풀 크기 조정 : Worker_ProcessesAuto; 이벤트 {worker_connections1024;}. 2. GZIP 압축 및 HTTP/2 프로토콜 활성화 : http {gzipon; server {listen443sslhttp2;}}. 3. 캐시 최적화 사용 : http {proxy_cache_path/path/to/cachelevels = 1 : 2k

기술 및 산업 요구에 따라 Python 및 JavaScript 개발자에 대한 절대 급여는 없습니다. 1. 파이썬은 데이터 과학 및 기계 학습에서 더 많은 비용을 지불 할 수 있습니다. 2. JavaScript는 프론트 엔드 및 풀 스택 개발에 큰 수요가 있으며 급여도 상당합니다. 3. 영향 요인에는 경험, 지리적 위치, 회사 규모 및 특정 기술이 포함됩니다.

구별되고 구별되는 것은 구별과 관련이 있지만, 다르게 사용됩니다. 뚜렷한 (형용사)는 사물 자체의 독창성을 묘사하고 사물 사이의 차이를 강조하는 데 사용됩니다. 뚜렷한 (동사)는 구별 행동이나 능력을 나타내며 차별 과정을 설명하는 데 사용됩니다. 프로그래밍에서 구별은 종종 중복 제거 작업과 같은 컬렉션에서 요소의 독창성을 나타내는 데 사용됩니다. 홀수 및 짝수 숫자를 구별하는 것과 같은 알고리즘이나 함수의 설계에 별개가 반영됩니다. 최적화 할 때 별도의 작업은 적절한 알고리즘 및 데이터 구조를 선택해야하며, 고유 한 작업은 논리 효율성의 구별을 최적화하고 명확하고 읽을 수있는 코드 작성에주의를 기울여야합니다.

! x 이해! x는 C 언어로 된 논리적 비 운영자입니다. 그것은 x의 값, 즉 실제 변경, 거짓, 잘못된 변경 사항을 부수합니다. 그러나 C의 진실과 거짓은 부울 유형보다는 숫자 값으로 표시되며, 0이 아닌 것은 참으로 간주되며 0만이 거짓으로 간주됩니다. 따라서! x는 음수를 양수와 동일하게 처리하며 사실로 간주됩니다.

코드 취약점, 브라우저 호환성, 성능 최적화, 보안 업데이트 및 사용자 경험 개선과 같은 요소로 인해 H5 페이지를 지속적으로 유지해야합니다. 효과적인 유지 관리 방법에는 완전한 테스트 시스템 설정, 버전 제어 도구 사용, 페이지 성능을 정기적으로 모니터링하고 사용자 피드백 수집 및 유지 관리 계획을 수립하는 것이 포함됩니다.

합에 대한 C에는 내장 합계 기능이 없지만 다음과 같이 구현할 수 있습니다. 루프를 사용하여 요소를 하나씩 축적합니다. 포인터를 사용하여 요소를 하나씩 액세스하고 축적합니다. 큰 데이터 볼륨의 경우 병렬 계산을 고려하십시오.

크롤링하는 동안 58.com 작업 페이지의 동적 데이터를 얻는 방법은 무엇입니까? Crawler 도구를 사용하여 58.com의 작업 페이지를 크롤링 할 때는이 문제가 발생할 수 있습니다.

코드 복사 및 붙여 넣기는 불가능하지는 않지만주의해서 처리해야합니다. 코드의 환경, 라이브러리, 버전 등과 같은 종속성은 현재 프로젝트와 일치하지 않으므로 오류 또는 예측할 수없는 결과를 초래할 수 있습니다. 파일 경로, 종속 라이브러리 및 Python 버전을 포함하여 컨텍스트가 일관되게 유지하십시오. 또한 특정 라이브러리의 코드를 복사 및 붙여 넣을 때 라이브러리 및 해당 종속성을 설치해야 할 수도 있습니다. 일반적인 오류에는 경로 오류, 버전 충돌 및 일관되지 않은 코드 스타일이 포함됩니다. 성능 최적화는 코드의 원래 목적 및 제약에 따라 재 설계 또는 리팩토링되어야합니다. 복사 코드를 이해하고 디버그하고 맹목적으로 복사하여 붙여 넣지 않는 것이 중요합니다.
