Java 및 Scala 언어는 기계 학습에 널리 사용됩니다. 이 기사에서는 다음 Java 및 Scala 프레임워크를 소개합니다. Java: Weka(기계 학습 알고리즘 및 도구 제공), H2O(분산형 메모리 내 기계 학습 플랫폼) Scala: Spark MLlib(분산 컴퓨팅 라이브러리의 일부, 기계 학습 알고리즘 제공) MLpipe(엔드 투 엔드 파이프라인 라이브러리) 이러한 프레임워크는 기계 학습 모델 구축을 단순화하고 교육 효율성을 개선하며 확장성과 프로덕션 배포를 지원합니다. 올바른 프레임워크를 선택하는 것은 프로젝트 요구 사항과 애플리케이션의 규모 및 복잡성에 따라 달라집니다.
소개
Java 및 Scala는 기계 학습에서 널리 사용되는 프로그래밍 언어이며 모델 구축 및 배포 프로세스를 단순화하기 위해 많은 프레임워크를 제공합니다. 이 기사에서는 몇 가지 인기 있는 Java 및 Scala 프레임워크를 소개하고 사용법을 설명하는 실제 예제를 제공합니다.
Weka
import weka.classifiers.trees.DecisionStump; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; public class WekaExample { public static void main(String[] args) throws Exception { // 1、加载数据 Instances data = DataSource.read("weather.arff"); // 2、构建决策树分类器 DecisionStump classifier = new DecisionStump(); classifier.buildClassifier(data); // 3、使用分类器进行预测 double[] prediction = classifier.distributionForInstance(data.instance(0)); System.out.println("第一行数据的预测结果:" + Arrays.toString(prediction)); } }
H2O
import hex.genmodel.easy.EasyPredictModelWrapper; import hex.genmodel.easy.RowData; import hex.genmodel.easy.exception.PredictException; import hex.genmodel.easy.prediction.BinomialModelPrediction; public class H2OExample { public static void main(String[] args) throws PredictException { // 1、加载模型 EasyPredictModelWrapper model = new EasyPredictModelWrapper("model.zip"); // 2、准备预测数据 RowData row = new RowData(); row.put("Age", 25); row.put("Sex", "M"); // 3、使用模型进行预测 BinomialModelPrediction prediction = model.predict(row); System.out.println("概率:" + prediction.classProbabilities[0]); } }
Spark MLlib
import org.apache.spark.ml.classification.LogisticRegression // 1、加载数据 val data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("data.csv") // 2、构建逻辑回归模型 val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3) // 3、拟合模型 val model = lr.fit(data) // 4、使用模型进行预测 val predictions = model.transform(data) predictions.show()
MLpipe
import org.mlpiper.dataframes.DataFrame import org.mlpiper.features.transformers.nlp.TextToBow import org.mlpiper.machinelearning.classification.ClassificationModel import org.mlpiper.utilities.FileSystem // 1、加载数据 val df = DataFrame.fromCSV("data.csv") // 2、文本到词袋变换 val ttb = TextToBow().setInputCol("text").setOutputCol("features") df.transformWith(ttb) // 3、训练分类模型 val model = ClassificationModel.randomForest() // 4、训练和评估模型 model.fit(df).evaluate(df)
요약
Java 및 Scala는 기계 학습 분야에서 풍부한 프레임워크를 제공하여 모델 구성을 단순화하고 훈련 효율성을 향상시키며 실현 가능한 결과를 얻을 수 있습니다. . 확장성 및 프로덕션 배포. 올바른 프레임워크를 선택하는 것은 특정 프로젝트 요구 사항과 애플리케이션의 규모 및 복잡성에 따라 달라집니다.
위 내용은 머신러닝 분야의 Java 프레임워크와 Scala 프레임워크의 적용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!