자율주행 시나리오에서 롱테일 문제를 해결하는 방법은 무엇입니까?
어제 인터뷰에서 롱테일 관련 질문을 해본 적이 있느냐는 질문을 받아서 간략하게 정리해볼까 합니다.
자율주행차의 롱테일 문제는 자율주행차의 에지 케이스, 즉 발생 확률이 낮은 가능한 시나리오를 말합니다. 인지된 롱테일 문제는 현재 단일 차량 지능형 자율주행차의 운영 설계 영역을 제한하는 주요 이유 중 하나입니다. 자율주행의 기본 아키텍처와 대부분의 기술적인 문제는 해결되었으며, 나머지 5%의 롱테일 문제는 점차 자율주행 발전을 제한하는 핵심이 되었습니다. 이러한 문제에는 다양한 단편적인 시나리오, 극단적인 상황, 예측할 수 없는 인간 행동이 포함됩니다.
자율주행의 엣지 시나리오
"롱테일"은 자율주행차(AV)에서 엣지 케이스를 의미하며 발생 확률이 낮은 시나리오입니다. 이러한 희귀 이벤트는 자주 발생하지 않고 더 고유하기 때문에 데이터 세트에서 누락되는 경우가 많습니다. 인간은 선천적으로 엣지 케이스를 잘 처리하지만 AI의 경우에도 마찬가지입니다. 엣지 씬을 유발할 수 있는 요인으로는 돌출부가 있는 트럭이나 특수 형상 차량, 급회전하는 차량, 혼잡한 군중 속에서의 운전, 보행자 무단횡단, 악천후 또는 조명 상태가 좋지 않은 경우, 우산을 들고 있는 사람, 자동차 안에 있는 사람 그런 다음 상자를 옮기는 경우, 나무가 쓰러지는 경우 등이 있습니다. 도로 중간 등예:
- 자동차 앞에 투명 필름을 붙이면 투명한 물체가 인식되어 차량의 속도가 느려지나요?
- 라이다 회사인 Aeye가 도전한 자율주행은 어떻게 대처할까요? 길 한가운데에 떠 있는 풍선? L4 무인 자동차는 충돌을 회피하는 경향이 있으며, 이 경우 불필요한 사고를 피하기 위해 회피 조치를 취하거나 브레이크를 적용합니다. 풍선은 부드러운 물체이므로 장애물 없이 직접 통과할 수 있습니다.
롱테일 문제를 해결하는 방법
합성 데이터는 큰 개념이고, 지각 데이터(너프, 카메라/센서 시뮬레이션)는 가장 뛰어난 분야 중 하나일 뿐입니다. 업계에서는 합성 데이터가 오랫동안 롱테일 행동 시뮬레이션의 표준 답변이 되어 왔습니다. 합성 데이터 또는 희소 신호 업샘플링은 롱테일 문제에 대한 첫 번째 솔루션 중 하나입니다. 롱테일 능력은 모델의 일반화 능력과 데이터에 포함된 정보의 양을 곱한 것입니다.Tesla 솔루션:
합성 데이터를 사용하여 가장자리 장면을 생성하여 데이터 세트를 확대합니다. 데이터 엔진의 원리: 먼저 기존 모델의 부정확성을 감지한 다음 이 클래스 사례를 단위 테스트에 추가하여 사용합니다. . 또한 유사한 사례에 대해 더 많은 데이터를 수집하여 모델을 재교육합니다. 이러한 반복적 접근 방식을 통해 가능한 한 많은 엣지 케이스를 포착할 수 있습니다. 엣지 케이스를 생성할 때 가장 큰 과제는 엣지 케이스를 수집하고 라벨을 지정하는 비용이 상대적으로 높다는 점이며, 다른 하나는 수집 동작이 매우 위험하거나 달성하기 불가능할 수도 있다는 것입니다.
NVIDIA 솔루션:
NVIDIA는 최근 "모방 훈련"이라는 전략적 접근 방식을 제안했습니다(아래 그림). 이 접근 방식에서는 실제 시스템 오류 사례를 시뮬레이션 환경에서 재현한 후 자율주행차용 교육 데이터로 사용합니다. 이 주기는 모델 성능이 수렴될 때까지 반복됩니다. 이 접근 방식의 목표는 결함 시나리오를 지속적으로 시뮬레이션하여 자율 주행 시스템의 견고성을 향상시키는 것입니다. 시뮬레이션 교육을 통해 개발자는 실제 세계의 다양한 오류 시나리오를 더 잘 이해하고 해결할 수 있습니다. 또한, 대량의 훈련 데이터를 빠르게 생성하여 모델 성능을 향상시킬 수 있습니다. 이 사이클을 반복함으로써생각:
Q: 합성 데이터는 가치가 있나요? A: 여기서 값은 두 가지 유형으로 나뉩니다. 첫 번째는 테스트 효율성, 즉 생성된 장면에서 감지 알고리즘의 일부 결함을 찾을 수 있는지 테스트하는 것입니다. 두 번째는 훈련 효율성, 즉 생성된 장면입니다. 알고리즘의 훈련이 효과적으로 성능을 향상시킬 수 있는지 여부가 사용됩니다. Q: 가상 데이터를 사용하여 성능을 향상시키는 방법은 무엇입니까? 훈련 세트에 더미 데이터를 추가하는 것이 정말로 필요한가요? 추가하면 성능 저하가 발생합니까? A: 이러한 질문은 답변하기 어렵기 때문에 훈련 정확도를 향상하기 위한 다양한 솔루션이 제작되었습니다.- 하이브리드 훈련: 실제 데이터에 다양한 비율의 가상 데이터를 추가하여 성능을 향상합니다.
- 전이 학습: 실제 데이터를 사용하여 모델을 사전 훈련한 다음 특정 레이어를 동결한 다음 훈련을 위해 혼합 데이터를 추가합니다.
- 모방 학습: 모델 오류에 대한 일부 시나리오를 설계하고 일부 데이터를 생성하여 모델 성능을 점진적으로 향상시키는 것도 매우 자연스러운 일입니다. 실제 데이터 수집 및 모델 훈련에서는 성능 향상을 위해 일부 보충 데이터도 목표 방식으로 수집됩니다.
일부 확장:
AI 시스템의 견고성을 철저하게 평가하려면 단위 테스트에 일반 사례와 특수 사례가 모두 포함되어야 합니다. 그러나 일부 극단적인 경우는 기존 실제 데이터세트에서 사용하지 못할 수도 있습니다. 이를 위해 AI 실무자는 합성 데이터를 테스트에 사용할 수 있습니다.
한 가지 예는 자율 차량의 시각 지능을 테스트하는 데 사용되는 합성 데이터 세트인 ParallelEye-CS입니다. 실제 데이터를 사용하는 것에 비해 합성 데이터를 생성하는 이점은 각 이미지의 장면에 대한 다차원 제어가 가능하다는 것입니다.
합성 데이터는 프로덕션 AV 모델의 극단적인 경우에 대한 실행 가능한 솔루션 역할을 합니다. 이는 실제 데이터 세트를 엣지 케이스로 보완하여 비정상적인 상황에서도 AV가 견고하게 유지되도록 보장합니다. 또한 실제 데이터보다 확장성이 뛰어나고 오류 발생 가능성이 낮으며 저렴합니다.
위 내용은 자율주행 시나리오에서 롱테일 문제를 해결하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











위에 작성됨 및 저자의 개인적인 이해 3DGS(3차원 가우스플래팅)는 최근 몇 년간 명시적 방사선장 및 컴퓨터 그래픽 분야에서 등장한 혁신적인 기술입니다. 이 혁신적인 방법은 수백만 개의 3D 가우스를 사용하는 것이 특징이며, 이는 주로 암시적 좌표 기반 모델을 사용하여 공간 좌표를 픽셀 값에 매핑하는 NeRF(Neural Radiation Field) 방법과 매우 다릅니다. 명시적인 장면 표현과 미분 가능한 렌더링 알고리즘을 갖춘 3DGS는 실시간 렌더링 기능을 보장할 뿐만 아니라 전례 없는 수준의 제어 및 장면 편집 기능을 제공합니다. 이는 3DGS를 차세대 3D 재구성 및 표현을 위한 잠재적인 게임 체인저로 자리매김합니다. 이를 위해 우리는 처음으로 3DGS 분야의 최신 개발 및 관심사에 대한 체계적인 개요를 제공합니다.

어제 인터뷰 도중 롱테일 관련 질문을 해본 적이 있느냐는 질문을 받아서 간략하게 요약해볼까 생각했습니다. 자율주행의 롱테일 문제는 자율주행차의 엣지 케이스, 즉 발생 확률이 낮은 가능한 시나리오를 말한다. 인지된 롱테일 문제는 현재 단일 차량 지능형 자율주행차의 운영 설계 영역을 제한하는 주요 이유 중 하나입니다. 자율주행의 기본 아키텍처와 대부분의 기술적인 문제는 해결되었으며, 나머지 5%의 롱테일 문제는 점차 자율주행 발전을 제한하는 핵심이 되었습니다. 이러한 문제에는 다양한 단편적인 시나리오, 극단적인 상황, 예측할 수 없는 인간 행동이 포함됩니다. 자율 주행에서 엣지 시나리오의 "롱테일"은 자율주행차(AV)의 엣지 케이스를 의미하며 발생 확률이 낮은 가능한 시나리오입니다. 이런 희귀한 사건

0. 전면 작성&& 자율주행 시스템은 다양한 센서(예: 카메라, 라이더, 레이더 등)를 사용하여 주변 환경을 인식하고 알고리즘과 모델을 사용하는 고급 인식, 의사결정 및 제어 기술에 의존한다는 개인적인 이해 실시간 분석과 의사결정을 위해 이를 통해 차량은 도로 표지판을 인식하고, 다른 차량을 감지 및 추적하며, 보행자 행동을 예측하는 등 복잡한 교통 환경에 안전하게 작동하고 적응할 수 있게 되므로 현재 널리 주목받고 있으며 미래 교통의 중요한 발전 분야로 간주됩니다. . 하나. 하지만 자율주행을 어렵게 만드는 것은 자동차가 주변에서 일어나는 일을 어떻게 이해할 수 있는지 알아내는 것입니다. 이를 위해서는 자율주행 시스템의 3차원 객체 감지 알고리즘이 주변 환경의 객체의 위치를 포함하여 정확하게 인지하고 묘사할 수 있어야 하며,

자율주행 궤적 예측은 차량의 주행 과정에서 발생하는 다양한 데이터를 분석하여 차량의 향후 주행 궤적을 예측하는 것을 의미합니다. 자율주행의 핵심 모듈인 궤도 예측의 품질은 후속 계획 제어에 매우 중요합니다. 궤적 예측 작업은 풍부한 기술 스택을 보유하고 있으며 자율 주행 동적/정적 인식, 고정밀 지도, 차선, 신경망 아키텍처(CNN&GNN&Transformer) 기술 등에 대한 익숙함이 필요합니다. 시작하기가 매우 어렵습니다! 많은 팬들은 가능한 한 빨리 궤도 예측을 시작하여 함정을 피하기를 희망합니다. 오늘은 궤도 예측을 위한 몇 가지 일반적인 문제와 입문 학습 방법을 살펴보겠습니다. 관련 지식 입문 1. 미리보기 논문이 순서대로 되어 있나요? A: 먼저 설문조사를 보세요, p

원제목: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving 논문 링크: https://arxiv.org/pdf/2402.02519.pdf 코드 링크: https://github.com/HKUST-Aerial-Robotics/SIMPL 저자 단위: Hong Kong University of Science 및 기술 DJI 논문 아이디어: 이 논문은 자율주행차를 위한 간단하고 효율적인 모션 예측 기준선(SIMPL)을 제안합니다. 기존 에이전트 센트와 비교

전면 및 시작점 작성 엔드 투 엔드 패러다임은 통합 프레임워크를 사용하여 자율 주행 시스템에서 멀티 태스킹을 달성합니다. 이 패러다임의 단순성과 명확성에도 불구하고 하위 작업에 대한 엔드투엔드 자율 주행 방법의 성능은 여전히 단일 작업 방법보다 훨씬 뒤떨어져 있습니다. 동시에 이전 엔드투엔드 방법에서 널리 사용된 조밀한 조감도(BEV) 기능으로 인해 더 많은 양식이나 작업으로 확장하기가 어렵습니다. 여기서는 희소 검색 중심의 엔드 투 엔드 자율 주행 패러다임(SparseAD)이 제안됩니다. 여기서 희소 검색은 밀집된 BEV 표현 없이 공간, 시간 및 작업을 포함한 전체 운전 시나리오를 완전히 나타냅니다. 특히 통합 스파스 아키텍처는 탐지, 추적, 온라인 매핑을 포함한 작업 인식을 위해 설계되었습니다. 게다가 무겁다.

지난 달에는 몇 가지 잘 알려진 이유로 업계의 다양한 교사 및 급우들과 매우 집중적인 교류를 가졌습니다. 교환에서 피할 수 없는 주제는 자연스럽게 엔드투엔드와 인기 있는 Tesla FSDV12입니다. 저는 이 기회를 빌어 여러분의 참고와 토론을 위해 지금 이 순간 제 생각과 의견을 정리하고 싶습니다. End-to-End 자율주행 시스템을 어떻게 정의하고, End-to-End 해결을 위해 어떤 문제가 예상되나요? 가장 전통적인 정의에 따르면, 엔드 투 엔드 시스템은 센서로부터 원시 정보를 입력하고 작업과 관련된 변수를 직접 출력하는 시스템을 의미합니다. 예를 들어 이미지 인식에서 CNN은 기존의 특징 추출 + 분류기 방식에 비해 end-to-end 방식으로 호출할 수 있습니다. 자율주행 작업에서는 다양한 센서(카메라/LiDAR)로부터 데이터를 입력받아

표적 탐지는 자율주행 시스템에서 상대적으로 성숙한 문제이며, 그 중 보행자 탐지는 가장 먼저 배포되는 알고리즘 중 하나입니다. 대부분의 논문에서 매우 포괄적인 연구가 수행되었습니다. 그러나 서라운드 뷰를 위한 어안 카메라를 사용한 거리 인식은 상대적으로 덜 연구되었습니다. 큰 방사형 왜곡으로 인해 표준 경계 상자 표현은 어안 카메라에서 구현하기 어렵습니다. 위의 설명을 완화하기 위해 확장된 경계 상자, 타원 및 일반 다각형 디자인을 극/각 표현으로 탐색하고 인스턴스 분할 mIOU 메트릭을 정의하여 이러한 표현을 분석합니다. 제안된 다각형 형태의 모델 fisheyeDetNet은 다른 모델보다 성능이 뛰어나며 동시에 자율 주행을 위한 Valeo fisheye 카메라 데이터 세트에서 49.5% mAP를 달성합니다.
