백엔드 개발 C++ 금융 인공지능에서의 C++ 신경망 모델 구현

금융 인공지능에서의 C++ 신경망 모델 구현

Jun 02, 2024 pm 02:58 PM
신경망 금융 인공지능

C++는 뛰어난 성능과 메모리 관리로 인해 신경망 구현에 적합합니다. 신경망 모델은 입력 계층, 숨겨진 계층 및 출력 계층을 포함하여 TensorFlow 또는 Eigen과 같은 신경망 라이브러리를 사용하여 구축할 수 있습니다. 신경망은 순방향 전파, 손실 계산, 역전파 및 가중치 업데이트를 포함하는 역전파 알고리즘을 통해 훈련됩니다. 실제 주가 예측 사례에서는 입력 및 출력 데이터를 정의하고, 신경망을 생성하고, 예측 함수를 사용하여 새로운 주가를 예측할 수 있습니다.

금융 인공지능에서의 C++ 신경망 모델 구현

금융 인공 지능의 C++ 신경망 모델 구현

소개

신경망은 금융 인공 지능의 중요한 부분이며 시장 동향을 예측하고 투자 포트폴리오를 최적화하며 사기를 탐지하는 데 사용됩니다. 이 기사에서는 C++를 사용하여 신경망 모델을 구현하고 훈련하는 방법을 소개하고 실제 사례를 제공합니다.

C++ 및 신경망 라이브러리

C++는 고성능 및 메모리 관리 기능으로 인해 신경망 구현에 매우 적합합니다. 다음과 같은 다양한 C++ 신경망 라이브러리를 사용할 수 있습니다.

  • TensorFlow
  • PyTorch
  • Eigen

신경망 모델 구성

신경망 기본 모델에는 입력 계층, 숨겨진 계층 및 출력 계층이 포함됩니다. 각 레이어는 입력에 대해 선형 변환을 수행하기 위해 가중치와 편향을 적용하는 뉴런으로 구성됩니다. 그런 다음 결과는 ReLU 또는 시그모이드와 같은 활성화 함수로 전달됩니다.

신경망 훈련

신경망은 역전파 알고리즘을 통해 훈련됩니다. 이 프로세스에는 다음이 포함됩니다.

  1. 순방향 전파: 입력이 모델을 통과하고 출력이 계산됩니다.
  2. 손실 계산: 모델 출력과 예상 출력을 비교하고 손실 함수 값을 계산합니다.
  3. 역전파: 가중치 및 편향에 대한 손실의 기울기를 계산합니다.
  4. 가중치 업데이트: 경사하강법 알고리즘을 사용하여 가중치를 업데이트하여 손실을 최소화합니다.

실용 사례: 주가 예측

신경망 모델을 사용하여 주가를 예측하는 실제 사례를 생각해 보세요. 방법은 다음과 같습니다.

#include <eigen3/Eigen/Dense>
#include <iostream>

using namespace Eigen;

int main() {
    // 定义输入数据
    MatrixXd inputs = MatrixXd::Random(100, 10);

    // 定义输出数据
    MatrixXd outputs = MatrixXd::Random(100, 1);

    // 创建和训练神经网络
    NeuralNetwork network;
    network.AddLayer(10, "relu");
    network.AddLayer(1, "linear");
    network.Train(inputs, outputs);

    // 预测新股票价格
    MatrixXd newInput = MatrixXd::Random(1, 10);
    MatrixXd prediction = network.Predict(newInput);

    std::cout << "Predicted stock price: " << prediction << std::endl;

    return 0;
}
로그인 후 복사

위 내용은 금융 인공지능에서의 C++ 신경망 모델 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

뜨거운 기사 태그

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

YOLO는 불멸이다! YOLOv9 출시: 성능과 속도 SOTA~ YOLO는 불멸이다! YOLOv9 출시: 성능과 속도 SOTA~ Feb 26, 2024 am 11:31 AM

YOLO는 불멸이다! YOLOv9 출시: 성능과 속도 SOTA~

GNN의 기초, 프론티어 및 적용 GNN의 기초, 프론티어 및 적용 Apr 11, 2023 pm 11:40 PM

GNN의 기초, 프론티어 및 적용

자율 주행을 위한 세 가지 주류 칩 아키텍처 개요를 한 기사로 살펴보세요. 자율 주행을 위한 세 가지 주류 칩 아키텍처 개요를 한 기사로 살펴보세요. Apr 12, 2023 pm 12:07 PM

자율 주행을 위한 세 가지 주류 칩 아키텍처 개요를 한 기사로 살펴보세요.

'Bilibili UP의 소유자는 세계 최초의 레드스톤 기반 신경망을 성공적으로 만들었습니다. 이는 소셜 미디어에서 센세이션을 일으켰고 Yann LeCun의 칭찬을 받았습니다.' 'Bilibili UP의 소유자는 세계 최초의 레드스톤 기반 신경망을 성공적으로 만들었습니다. 이는 소셜 미디어에서 센세이션을 일으켰고 Yann LeCun의 칭찬을 받았습니다.' May 07, 2023 pm 10:58 PM

'Bilibili UP의 소유자는 세계 최초의 레드스톤 기반 신경망을 성공적으로 만들었습니다. 이는 소셜 미디어에서 센세이션을 일으켰고 Yann LeCun의 칭찬을 받았습니다.'

다중 경로, 다중 도메인, 모든 것을 포함합니다! Google AI, 다중 도메인 학습 일반 모델 MDL 출시 다중 경로, 다중 도메인, 모든 것을 포함합니다! Google AI, 다중 도메인 학습 일반 모델 MDL 출시 May 28, 2023 pm 02:12 PM

다중 경로, 다중 도메인, 모든 것을 포함합니다! Google AI, 다중 도메인 학습 일반 모델 MDL 출시

강풍에도 견딜 수 있는 드론? Caltech는 12분의 비행 데이터를 사용하여 드론이 바람을 타고 비행하도록 가르칩니다. 강풍에도 견딜 수 있는 드론? Caltech는 12분의 비행 데이터를 사용하여 드론이 바람을 타고 비행하도록 가르칩니다. Apr 09, 2023 pm 11:51 PM

강풍에도 견딜 수 있는 드론? Caltech는 12분의 비행 데이터를 사용하여 드론이 바람을 타고 비행하도록 가르칩니다.

1.3ms는 1.3ms가 걸립니다! Tsinghua의 최신 오픈 소스 모바일 신경망 아키텍처 RepViT 1.3ms는 1.3ms가 걸립니다! Tsinghua의 최신 오픈 소스 모바일 신경망 아키텍처 RepViT Mar 11, 2024 pm 12:07 PM

1.3ms는 1.3ms가 걸립니다! Tsinghua의 최신 오픈 소스 모바일 신경망 아키텍처 RepViT

몇 년 안에 프로그래머가 쇠퇴할 것이라는 사실을 알고 계십니까? 몇 년 안에 프로그래머가 쇠퇴할 것이라는 사실을 알고 계십니까? Nov 08, 2023 am 11:17 AM

몇 년 안에 프로그래머가 쇠퇴할 것이라는 사실을 알고 계십니까?

See all articles