자율주행의 최초 순수 시각적 정적 재구성
순수한 시각적 라벨링 솔루션은 주로 비전과 동적 라벨링을 위한 GPS, IMU 및 휠 속도 센서의 일부 데이터를 사용합니다. 물론 대량 생산 시나리오의 경우 순수 비전일 필요는 없습니다. 일부 대량 생산 차량에는 고체 레이더(AT128)와 같은 센서가 장착됩니다. 대량 생산 관점에서 데이터 폐쇄 루프를 만들고 이러한 센서를 모두 사용하면 동적 개체에 라벨을 붙이는 문제를 효과적으로 해결할 수 있습니다. 그러나 우리 계획에는 고체 레이더가 없습니다. 따라서 가장 일반적인 대량 생산 라벨링 솔루션을 소개하겠습니다.
순수한 시각적 주석 솔루션의 핵심은 고정밀 포즈 재구성에 있습니다. 재구성 정확도를 보장하기 위해 SFM(Structure from Motion) 포즈 재구성 방식을 사용합니다. 그러나 기존 SFM, 특히 증분 SFM은 매우 느리고 계산 비용이 많이 듭니다. 계산 복잡도는 O(n^4)입니다. 여기서 n은 이미지 수입니다. 이러한 종류의 재구성 효율성은 대규모 모델의 데이터 주석에 허용되지 않습니다. SFM 솔루션을 일부 개선했습니다.
개선된 클립 재구성은 주로 세 가지 모듈로 나뉩니다. 1) 다중 센서 데이터, GNSS, IMU 및 휠 속도계를 사용하여 포즈_그래프 최적화를 구성하고 이 알고리즘을 Wheel-Imu-GNSS -Odometry( WIGO); 2) 이미지의 특징 추출 및 일치, 초기 3D 포인트를 얻기 위해 초기화된 포즈를 직접 사용하여 삼각측량 3) 마지막으로 전역 BA(번들 조정)가 수행됩니다. 저희 솔루션은 증분 SFM을 피하고, 다른 클립 간에 병렬 작업을 실현할 수 있어 기존 증분 재구성에 비해 포즈 재구성의 효율성이 크게 향상됩니다. 시간 효율성 향상.
단일 재구성 프로세스 중에 우리 솔루션도 일부 최적화를 수행했습니다. 예를 들어, 우리는 학습 기반 기능(Superpoint 및 Superglue)을 사용했는데, 하나는 특징점이고 다른 하나는 일치 방법으로 기존 SIFT 핵심 포인트를 대체했습니다. NN 기능 학습의 장점은 한편으로는 일부 맞춤형 요구 사항을 충족하고 일부 약한 텍스처와 어두운 조명 상황에서 견고성을 향상시키기 위해 데이터 기반 방식으로 규칙을 설계할 수 있다는 것입니다. 키포인트 감지 및 매칭의 효율성. 우리는 몇 가지 비교 실험을 수행한 결과 야간 장면에서 NN 기능의 성공률이 SFIT의 성공률보다 20%에서 80%로 약 4배 더 높다는 것을 발견했습니다.
단일 클립의 재구성 결과를 얻은 후 여러 클립을 집계합니다. 기존 HDmap 매핑 구조 매칭 방식과 달리, 집계의 정확성을 보장하기 위해 특징점 수준 집계를 채택합니다. 즉, 특징점 매칭을 통해 클립 간의 집계 제약 조건을 구현합니다. 이 작업은 SLAM의 루프 폐쇄 감지와 유사합니다. 먼저 GPS를 사용하여 일부 후보 일치 프레임을 결정한 다음 특징점과 설명을 사용하여 이미지를 일치시킵니다. 마지막으로 이러한 루프 폐쇄 제약 조건을 결합하여 전역 BA(번들)를 구성합니다. 조정) 및 최적화. 현재 우리 솔루션의 정확도와 RTE 지수는 기존의 일부 시각적 SLAM 또는 매핑 솔루션을 훨씬 능가합니다.
실험: colmap cuda 버전을 사용하고, 180장의 사진을 사용하고, 3848*2168 해상도를 사용하고, 내부 매개변수를 수동으로 설정하고, 나머지는 기본 설정을 사용하여 희소 재구성에 약 15분이 소요되고, 전체 밀도 재구성에는 매우 오랜 시간이 걸립니다. 시간 (1-2h)
재구성 결과 통계
특징점도
희소 재구성 효과
직선 단면의 전반적인 효과
그라운드 콘 효과
높이의 속도 제한 기호 효과
교차로 얼룩말 교차 효과
또한 수렴되지 않는 이미지 세트를 시도했지만 수렴되지 않았습니다. 정적 자아 필터링, 형성. 차량의 움직임에 따라 50-100m마다 클립 높은 동적 장면 동적 포인트 필터링, 터널 장면 포즈
원주 및 파노라마 멀티 카메라 사용: 포인트 매칭 지도 최적화, 내부 및 외부 매개변수 최적화 항목, 기존 오돔 사용 기능이 있습니다.
https://github.com/colmap/colmap/blob/main/pycolmap/custom_bundle_adjustment.py
pyceres.solve(solver_options, Bundle_adjuster.problem, summary)
3DGS는 조밀한 재구성을 가속화합니다. 그렇지 않으면 너무 오래 걸립니다. 받아들이다
위 내용은 자율주행의 최초 순수 시각적 정적 재구성의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











위에 작성됨 및 저자의 개인적인 이해 3DGS(3차원 가우스플래팅)는 최근 몇 년간 명시적 방사선장 및 컴퓨터 그래픽 분야에서 등장한 혁신적인 기술입니다. 이 혁신적인 방법은 수백만 개의 3D 가우스를 사용하는 것이 특징이며, 이는 주로 암시적 좌표 기반 모델을 사용하여 공간 좌표를 픽셀 값에 매핑하는 NeRF(Neural Radiation Field) 방법과 매우 다릅니다. 명시적인 장면 표현과 미분 가능한 렌더링 알고리즘을 갖춘 3DGS는 실시간 렌더링 기능을 보장할 뿐만 아니라 전례 없는 수준의 제어 및 장면 편집 기능을 제공합니다. 이는 3DGS를 차세대 3D 재구성 및 표현을 위한 잠재적인 게임 체인저로 자리매김합니다. 이를 위해 우리는 처음으로 3DGS 분야의 최신 개발 및 관심사에 대한 체계적인 개요를 제공합니다.

어제 인터뷰 도중 롱테일 관련 질문을 해본 적이 있느냐는 질문을 받아서 간략하게 요약해볼까 생각했습니다. 자율주행의 롱테일 문제는 자율주행차의 엣지 케이스, 즉 발생 확률이 낮은 가능한 시나리오를 말한다. 인지된 롱테일 문제는 현재 단일 차량 지능형 자율주행차의 운영 설계 영역을 제한하는 주요 이유 중 하나입니다. 자율주행의 기본 아키텍처와 대부분의 기술적인 문제는 해결되었으며, 나머지 5%의 롱테일 문제는 점차 자율주행 발전을 제한하는 핵심이 되었습니다. 이러한 문제에는 다양한 단편적인 시나리오, 극단적인 상황, 예측할 수 없는 인간 행동이 포함됩니다. 자율 주행에서 엣지 시나리오의 "롱테일"은 자율주행차(AV)의 엣지 케이스를 의미하며 발생 확률이 낮은 가능한 시나리오입니다. 이런 희귀한 사건

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

0. 전면 작성&& 자율주행 시스템은 다양한 센서(예: 카메라, 라이더, 레이더 등)를 사용하여 주변 환경을 인식하고 알고리즘과 모델을 사용하는 고급 인식, 의사결정 및 제어 기술에 의존한다는 개인적인 이해 실시간 분석과 의사결정을 위해 이를 통해 차량은 도로 표지판을 인식하고, 다른 차량을 감지 및 추적하며, 보행자 행동을 예측하는 등 복잡한 교통 환경에 안전하게 작동하고 적응할 수 있게 되므로 현재 널리 주목받고 있으며 미래 교통의 중요한 발전 분야로 간주됩니다. . 하나. 하지만 자율주행을 어렵게 만드는 것은 자동차가 주변에서 일어나는 일을 어떻게 이해할 수 있는지 알아내는 것입니다. 이를 위해서는 자율주행 시스템의 3차원 객체 감지 알고리즘이 주변 환경의 객체의 위치를 포함하여 정확하게 인지하고 묘사할 수 있어야 하며,

첫 번째 파일럿 및 주요 기사에서는 주로 자율 주행 기술에서 일반적으로 사용되는 여러 좌표계를 소개하고 이들 간의 상관 관계 및 변환을 완료하고 최종적으로 통합 환경 모델을 구축하는 방법을 소개합니다. 여기서 초점은 차량에서 카메라 강체로의 변환(외부 매개변수), 카메라에서 이미지로의 변환(내부 매개변수), 이미지에서 픽셀 단위로의 변환을 이해하는 것입니다. 3D에서 2D로의 변환에는 해당 왜곡, 변환 등이 포함됩니다. 요점: 차량 좌표계와 카메라 본체 좌표계를 다시 작성해야 합니다. 평면 좌표계와 픽셀 좌표계 난이도: 이미지 평면에서 왜곡 제거와 왜곡 추가를 모두 고려해야 합니다. 2. 소개 좌표계에는 픽셀 평면 좌표계(u, v), 이미지 좌표계(x, y), 카메라 좌표계(), 월드 좌표계() 등 총 4가지 비전 시스템이 있습니다. 각 좌표계 사이에는 관계가 있으며,

자율주행 궤적 예측은 차량의 주행 과정에서 발생하는 다양한 데이터를 분석하여 차량의 향후 주행 궤적을 예측하는 것을 의미합니다. 자율주행의 핵심 모듈인 궤도 예측의 품질은 후속 계획 제어에 매우 중요합니다. 궤적 예측 작업은 풍부한 기술 스택을 보유하고 있으며 자율 주행 동적/정적 인식, 고정밀 지도, 차선, 신경망 아키텍처(CNN&GNN&Transformer) 기술 등에 대한 익숙함이 필요합니다. 시작하기가 매우 어렵습니다! 많은 팬들은 가능한 한 빨리 궤도 예측을 시작하여 함정을 피하기를 희망합니다. 오늘은 궤도 예측을 위한 몇 가지 일반적인 문제와 입문 학습 방법을 살펴보겠습니다. 관련 지식 입문 1. 미리보기 논문이 순서대로 되어 있나요? A: 먼저 설문조사를 보세요, p

지난 달에는 몇 가지 잘 알려진 이유로 업계의 다양한 교사 및 급우들과 매우 집중적인 교류를 가졌습니다. 교환에서 피할 수 없는 주제는 자연스럽게 엔드투엔드와 인기 있는 Tesla FSDV12입니다. 저는 이 기회를 빌어 여러분의 참고와 토론을 위해 지금 이 순간 제 생각과 의견을 정리하고 싶습니다. End-to-End 자율주행 시스템을 어떻게 정의하고, End-to-End 해결을 위해 어떤 문제가 예상되나요? 가장 전통적인 정의에 따르면, 엔드 투 엔드 시스템은 센서로부터 원시 정보를 입력하고 작업과 관련된 변수를 직접 출력하는 시스템을 의미합니다. 예를 들어 이미지 인식에서 CNN은 기존의 특징 추출 + 분류기 방식에 비해 end-to-end 방식으로 호출할 수 있습니다. 자율주행 작업에서는 다양한 센서(카메라/LiDAR)로부터 데이터를 입력받아

원제목: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving 논문 링크: https://arxiv.org/pdf/2402.02519.pdf 코드 링크: https://github.com/HKUST-Aerial-Robotics/SIMPL 저자 단위: Hong Kong University of Science 및 기술 DJI 논문 아이디어: 이 논문은 자율주행차를 위한 간단하고 효율적인 모션 예측 기준선(SIMPL)을 제안합니다. 기존 에이전트 센트와 비교
