기술 주변기기 일체 포함 설명 가능한 AI: 복잡한 AI/ML 모델 설명

설명 가능한 AI: 복잡한 AI/ML 모델 설명

Jun 03, 2024 pm 10:08 PM
일체 포함 기계 학습

번역자 | Li Rui

리뷰어 | Chonglou

요즘 인공지능(AI)과 머신러닝(ML) 모델은 점점 더 복잡해지고 있으며, 이러한 모델은 의 출력은 블랙박스이므로 이해관계자에게 설명할 수 없습니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명

설명 가능한 AI가 중요한 몇 가지 이유

  • 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사결정 방식을 이해해야 합니다.
  • 규정 준수: 유럽 연합의 일반 데이터 보호 규정(GDPR)과 같은 법률에서는 개인에게 영향을 미치는 자동화된 결정에 대한 설명을 요구합니다.
  • 모델 디버깅 및 개선: 모델 결정에 대한 통찰력을 얻으면 개발자가 편견이나 부정확성을 식별하고 수정하는 데 도움이 될 수 있습니다.

Interpretability 인공지능의 핵심 기술

지능형 작업자의 해석성은 기술 모델을 말하며, 모델에 구애받지 않는 방법과 모델 특정 방법으로 나눌 수 있으며, 각 방법은 서로 다릅니다. 스마트 작업자 모델 및 애플리케이션 유형. localdel의 무사질 방법

(1) 국소 해석 가능한 모델 Agnostic 설명 (LIME)

local 해석 가능한 모델 Agnostic 설명 (LIME)은 예측을 위해 설계된 혁신 기술입니다. 인간이 이해할 수 있는 복잡한 기계 학습 모델. 본질적으로 LIME의 이점은 복잡성에 관계없이 모든 분류기 또는 회귀기의 동작을 설명할 수 있는 단순성과 능력에 있습니다. LIME은 입력 데이터 근처에서 샘플링한 다음 간단한 모델(예: 선형 회귀 모델)을 사용하여 원래 복잡한 모델의 예측을 근사화하는 방식으로 작동합니다. 단순 모델은 복잡한 모델의 의사 결정 프로세스를 이해할 수 있도록 특정 입력에 대한 복잡한 모델의 예측을 해석하는 방법을 학습합니다. 이렇게 하면 복잡한 모델이 블랙박스인 경우에도 해석 가능한 모델을 사용하여 국소적으로 근사화함으로써 간단한 모델

LIME의 해석을 통해 모든 분류기 또는 회귀 분석기의 예측을 밝힐 수 있습니다. 핵심 아이디어는 입력 데이터를 교란하고 예측이 어떻게 변하는지 관찰하는 것입니다. 이는 예측에 큰 영향을 미치는 특징을 식별하는 데 도움이 됩니다.

수학적으로, 주어진 인스턴스(x)와 모델(f)에 대해 LIME은 새로운 샘플 데이터 세트를 생성하고 (f)로 레이블을 지정합니다. 그런 다음 (f)에 지역적으로 충실한 (f)를 기반으로 하는 간단한 모델(예: 선형 모델)을 학습하여 다음 목표를 최소화합니다.

[ xi(x) = underset{g in G }{text {argmin}} ; L(f, g, pi_x) + Omega(g) ]

여기서 (L)은 (f)를 (x)로 근사할 때 (g)가 얼마나 불충실한지를 나타내는 척도입니다. ), (pi_x)는 (x) 주변의 지역적 이웃을 정의하는 근접성 측정값이고, (Omega)는 (g)의 복잡성에 페널티를 줍니다.

(2) Sh

apley additivity

explanation (SHAP) )을 지정하여 각 예측 특성에는 사람들이 기계 학습 모델의 출력을 이해하는 데 도움이 되는 중요한 값이 할당됩니다. 사람들이 집의 크기, 연식, 위치 등의 특성을 기반으로 집 가격을 예측하려고 한다고 상상해 보세요. 특정 기능은 예상 가격을 높일 수 있지만 다른 기능은 예상 가격을 낮출 수 있습니다. SHAP 값은 기본 예측(데이터 세트의 평균 예측)을 기준으로 최종 예측에 대한 각 기능의 기여도를 정확하게 정량화하는 데 도움이 됩니다. 특성(i)의 SHAP 값은 다음과 같이 정의됩니다.

[ phi_i = sum_{S subseteq F setminus {i}} frac{|S|!(|F| - |S | - 1)!}{|F|!} [f_x(S cup {i}) - f_x(S)] ]

여기서 F)는 모든 기능의 집합이고 S)는 제외( i)의 기능 하위 집합, (f_x(S))는 기능 세트 S의 예측입니다. 합계는 가능한 모든 기능 하위 집합입니다. 이 공식을 사용하면 각 기능의 기여도가 예측에 미치는 영향을 기준으로 공정하게 분산됩니다.

모델별 방법

(1) 신경망의 주의 메커니즘

신경망의 주의 메커니즘은 예측에 가장 관련성이 높은 입력 데이터 부분을 강조합니다. . 시퀀스-시퀀스 모델 시나리오에서 목표 시간 단계(t)와 소스 시간 단계(j)에 대한 주의 가중치(alpha_{tj})는 다음과 같이 계산됩니다.

[ alpha_{tj} = frac {exp(e_{tj})}{sum_{k=1}^{T_s} exp(e_{tk})} ]

여기서 (e_{tj})는 위치(j)의 입력과 위치(t)의 출력 간의 정렬을 평가하는 점수 함수이고, (T_s)는 입력 시퀀스의 길이입니다. 이 메커니즘을 통해 모델은 입력 데이터의 관련 부분에 집중할 수 있으므로 해석 가능성이 향상됩니다.

(2) 결정 트리 시각화

결정 트리는 결정을 입력 특성에서 파생된 일련의 규칙으로 표현하여 고유한 해석 가능성을 제공합니다. 의사결정 트리의 구조는 기능 기반 결정을 나타내는 노드와 결과를 나타내는 잎을 통해 시각화를 가능하게 합니다. 이 시각적 표현을 통해 입력 기능이 어떻게 특정 예측으로 이어지는지 직접 추적할 수 있습니다.

(3) 실제 구현 및 윤리적 고려 사항

설명 가능한 AI를 구현하려면 모델 유형, 애플리케이션 요구 사항 및 설명 대상 고객을 신중하게 고려해야 합니다. 모델 성능과 해석 가능성 간의 균형을 맞추는 것도 중요합니다. 윤리적으로 AI 시스템의 공정성, 책임성, 투명성을 보장하는 것이 중요합니다. 설명 가능한 AI의 향후 방향에는 설명 프레임워크를 표준화하고 보다 효율적인 설명 방법에 대한 지속적인 연구가 포함됩니다.

결론

Explainable AI는 복잡한 AI/ML 모델을 해석하고 애플리케이션에 대한 신뢰를 제공하고 책임을 보장하는 데 매우 중요합니다. LIME, SHAP, 주의 메커니즘 및 의사결정 트리 시각화와 같은 기술을 활용합니다. 분야가 발전함에 따라 더욱 정교하고 표준화된 해석 가능한 AI 방법의 개발은 소프트웨어 개발 및 규정 준수의 진화하는 요구 사항을 해결하는 데 매우 중요할 것입니다.

원제: 설명 가능한 AI: 복잡한 AI/ML 모델 해석 작성자: Rajiv Avacharmal


위 내용은 설명 가능한 AI: 복잡한 AI/ML 모델 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. Aug 01, 2024 pm 09:40 PM

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

See all articles