C++ 일반 프로그래밍에서 런타임 유형 정보를 처리하는 방법은 무엇입니까?
C++ 일반 프로그래밍에서는 RTTI(런타임 유형 정보)를 처리하기 위해 두 가지 방법이 제공됩니다. Dynamic_cast 연산자는 기본 클래스 포인터 또는 참조를 파생 클래스 포인터 또는 참조로 변환하는 데 사용됩니다. typeid 연산자는 객체의 유형 정보를 반환하며, name() 멤버 함수를 통해 유형 이름을 얻을 수 있습니다. RTTI는 편리하기는 하지만 추가 오버헤드가 발생하므로 필요한 경우에만 권장되며 이로 인해 발생할 수 있는 바이너리 호환성 문제를 염두에 두어야 합니다.
C++ 일반 프로그래밍에서 RTTI(런타임 유형 정보) 처리
C++ 일반 프로그래밍에서는 런타임 시 개체 또는 참조 변수의 유형 정보를 가져와야 하는 경우가 많습니다. C++에서는 이러한 목적을 위해 RTTI(런타임 유형 정보) 메커니즘을 제공합니다.
dynamic_cast
dynamic_cast
연산자를 사용하면 기본 클래스 포인터 또는 참조를 파생 클래스 포인터 또는 참조로 변환하는 데 사용됩니다. 변환이 성공하면 파생 클래스에 대한 포인터나 참조가 반환되고, 그렇지 않으면 nullptr
가 반환됩니다. dynamic_cast
运算符用于将一个基类指针或引用转换为派生类指针或引用。如果转换成功,它返回派生类的指针或引用;否则,返回 nullptr
。
class Base { }; class Derived : public Base { }; int main() { Base* base_ptr = new Derived(); // 检查 base_ptr 是否指向 Derived 对象 Derived* derived_ptr = dynamic_cast<Derived*>(base_ptr); if (derived_ptr != nullptr) { // 转换成功,base_ptr 指向 Derived 对象 } }
使用 typeid
typeid
运算符返回对象的类型信息,该类型信息是一个 std::type_info
对象。可以使用 name()
成员函数获取类型名称,可以使用 before()
和 after()
class Base { }; class Derived : public Base { }; int main() { Base obj; std::cout << typeid(obj).name() << std::endl; // 输出:Base // 检查 obj 是否属于 Derived 类型 if (typeid(obj).before(typeid(Derived))) { std::cout << "obj is not a Derived object" << std::endl; } }
typeid
typeid
연산자를 사용하여 std::type_info
개체인 개체의 유형 정보를 반환합니다. name()
멤버 함수를 사용하여 유형 이름을 얻을 수 있고, before()
및 after()
멤버 함수를 사용하여 유형을 비교할 수 있습니다. . class Shape { public: virtual void draw() = 0; }; class Circle : public Shape { public: void draw() override { std::cout << "Drawing a circle" << std::endl; } }; class Rectangle : public Shape { public: void draw() override { std::cout << "Drawing a rectangle" << std::endl; } }; class Triangle : public Shape { public: void draw() override { std::cout << "Drawing a triangle" << std::endl; } }; int main() { std::vector<Shape*> shapes{new Circle, new Rectangle, new Triangle}; for (auto shape : shapes) { // 使用 RTTI 获取形状类型 std::cout << "Drawing a " << typeid(*shape).name() << std::endl; // 根据类型调用相应的方法 shape->draw(); } }
RTTI는 추가 오버헤드가 발생하므로 필요할 때만 사용하는 것을 권장합니다. RTTI는 바이너리 호환성 문제를 일으킬 수 있으므로 라이브러리에서 RTTI를 사용할 때는 주의하세요.
실용 사례
시나리오:
유형에 따라 다양한 작업을 수행해야 하는 도형 세트(예: 원, 직사각형, 삼각형)가 있습니다. 🎜코드: 🎜🎜Drawing a Circle Drawing a Rectangle Drawing a Triangle
위 내용은 C++ 일반 프로그래밍에서 런타임 유형 정보를 처리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











C에서 숯 유형은 문자열에 사용됩니다. 1. 단일 문자를 저장하십시오. 2. 배열을 사용하여 문자열을 나타내고 널 터미네이터로 끝납니다. 3. 문자열 작동 함수를 통해 작동합니다. 4. 키보드에서 문자열을 읽거나 출력하십시오.

언어의 멀티 스레딩은 프로그램 효율성을 크게 향상시킬 수 있습니다. C 언어에서 멀티 스레딩을 구현하는 4 가지 주요 방법이 있습니다. 독립 프로세스 생성 : 여러 독립적으로 실행되는 프로세스 생성, 각 프로세스에는 자체 메모리 공간이 있습니다. 의사-다일리트 레딩 : 동일한 메모리 공간을 공유하고 교대로 실행하는 프로세스에서 여러 실행 스트림을 만듭니다. 멀티 스레드 라이브러리 : PTHREADS와 같은 멀티 스레드 라이브러리를 사용하여 스레드를 만들고 관리하여 풍부한 스레드 작동 기능을 제공합니다. COROUTINE : 작업을 작은 하위 작업으로 나누고 차례로 실행하는 가벼운 다중 스레드 구현.

C35의 계산은 본질적으로 조합 수학이며, 5 개의 요소 중 3 개 중에서 선택된 조합 수를 나타냅니다. 계산 공식은 C53 = 5입니다! / (3! * 2!)는 효율을 향상시키고 오버플로를 피하기 위해 루프에 의해 직접 계산할 수 있습니다. 또한 확률 통계, 암호화, 알고리즘 설계 등의 필드에서 많은 문제를 해결하는 데 조합의 특성을 이해하고 효율적인 계산 방법을 마스터하는 데 중요합니다.

STD :: 고유 한 컨테이너의 인접한 중복 요소를 제거하고 끝으로 이동하여 반복자를 첫 번째 중복 요소로 반환합니다. STD :: 거리는 두 반복자 사이의 거리, 즉 그들이 가리키는 요소의 수를 계산합니다. 이 두 기능은 코드를 최적화하고 효율성을 향상시키는 데 유용하지만 : std :: 고유 한 중복 요소를 다루는 것과 같이주의를 기울여야합니다. 비 랜덤 액세스 반복자를 다룰 때는 STD :: 거리가 덜 효율적입니다. 이러한 기능과 모범 사례를 마스터하면이 두 기능의 힘을 완전히 활용할 수 있습니다.

C 언어에서 뱀 명칭은 코딩 스타일 컨벤션으로 여러 단어를 연결하여 여러 단어를 연결하여 가변 이름 또는 기능 이름을 형성하여 가독성을 향상시킵니다. 편집 및 운영에는 영향을 미치지 않지만 긴 이름 지정, IDE 지원 문제 및 역사적 수하물을 고려해야합니다.

C의 Release_Semaphore 함수는 다른 스레드 또는 프로세스가 공유 리소스에 액세스 할 수 있도록 얻은 수피를 해제하는 데 사용됩니다. 세마포어 수를 1 씩 증가시켜 차단 스레드가 계속 실행 될 수 있습니다.

Dev-C 4.9.9.2 컴파일 오류 및 솔루션 Windows 11 시스템에서 프로그램을 컴파일 할 때 Dev-C 4.9.9.2를 사용하여 다음과 같은 오류 메시지를 표시 할 수 있습니다. gcc.exe : aborted (programcollect2) pleasesubmitafullbugreport.seeforinstructions. 최종 "컴파일은 성공적"이지만 실제 프로그램은 실행할 수 없으며 오류 메시지 "원본 코드 아카이브를 컴파일 할 수 없습니다"가 팝업됩니다. 일반적으로 링커가 수집하기 때문입니다

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.
