기술 주변기기 일체 포함 Bytedance Doubao와 무한 대학은 CAL을 제안했습니다: 시각적으로 관련된 토큰을 통해 다중 모드 정렬 효과를 향상합니다.

Bytedance Doubao와 무한 대학은 CAL을 제안했습니다: 시각적으로 관련된 토큰을 통해 다중 모드 정렬 효과를 향상합니다.

Jun 19, 2024 am 09:53 AM
프로젝트 바이트댄스 빈백 모델

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

현재 주류 시각적 언어 모델(VLM)은 주로 추가 미세 조정을 위한 LLM(대형 언어 모델)을 기반으로 합니다. 따라서 다양한 방법으로 이미지를 LLM의 임베딩 공간에 매핑한 후 자동 회귀 방법을 사용하여 이미지 토큰을 기반으로 답을 예측하는 것이 필요합니다.

이 과정에서 모달 정렬은 텍스트 토큰을 통해 암묵적으로 구현됩니다. 이 단계를 어떻게 정렬하는 것이 매우 중요합니다.

이 문제에 대응하여 우한대학교, ByteDance Beanbao 대형 모델팀, 중국과학원의 연구원들은 대조 학습을 기반으로 한 텍스트 토큰 스크리닝 방법(CAL)을 제안했습니다. 이미지와 관련성이 높은 이미지에는 손실 함수의 가중치가 증가하여 보다 정확한 다중 모드 정렬을 달성합니다.

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

  • 문서 링크: https://arxiv.org/pdf/2405.17871
  • 코드 링크: https://github.com/foundation-multimodal-models/CAL

CAL의 주요 특징은 다음과 같습니다.

  • 은 추가 사전 교육 단계 없이 교육 프로세스에 직접 중첩될 수 있습니다.
  • 시각화를 통해 CAL이 이미지 모달 정렬을 향상시키는 것을 확인할 수 있습니다.
  • CAL을 사용하면 학습 프로세스가 시끄러운 데이터에 대한 저항력을 더욱 높일 수 있습니다.

연구 동기

현재 시각적 언어 모델은 이미지 양식의 정렬에 의존하며 정렬을 수행하는 방법은 매우 중요합니다. 현재 주류 방법은 텍스트 자동 회귀를 통해 암시적 정렬을 수행하는 것이지만, 이미지 정렬에 대한 각 텍스트 토큰의 기여도는 일관되지 않습니다. 이러한 텍스트 토큰을 구별하는 것이 매우 필요합니다.

CAL은 기존 시각적 언어 모델(VLM) 훈련 데이터에서 텍스트 토큰을 세 가지 범주로 나눌 수 있다고 제안했습니다. 사람, 동물, 사물), 수량, 색상, 텍스트 등 이러한 토큰은 이미지 정보에 직접적으로 해당하며 다중 모드 정렬에 중요합니다.

그림과 상관관계가 낮은 텍스트
    : 다음 단어나 이전 텍스트에서 유추할 수 있는 내용 등. 이러한 토큰은 실제로 VLM의 일반 텍스트 기능을 교육하는 데 주로 사용됩니다.
  • 이미지 내용과 모순되는 텍스트
  • : 이러한 토큰은 이미지 정보와 일치하지 않으며 오해의 소지가 있는 정보를 제공하여 다중 모드 정렬 프로세스에 부정적인 영향을 미칠 수도 있습니다.
  • 标 그림 1: 녹색 표시는 관련성이 높은 토큰과 관련이 있고 빨간색은 내용과 반대이며 무색은 중립 토큰입니다. 토큰은 실제로 더 큰 비율을 차지하지만 이미지에 크게 의존하지 않기 때문에 이미지의 모달 정렬에 거의 영향을 미치지 않습니다. 따라서 더 나은 정렬을 위해서는 첫 번째 유형의 텍스트 토큰, 즉 이미지와 관련성이 높은 토큰의 가중치를 높일 필요가 있습니다. 이 토큰 부분을 어떻게 찾는지가 이 문제를 해결하는 열쇠가 되었습니다.
    Method

    이미지와 관련성이 높은 토큰 찾기 이 문제는 조건 대조를 통해 해결할 수 있습니다.

    학습 데이터의 각 이미지-텍스트 쌍에 대해 이미지 입력이 없는 경우 각 텍스트 토큰의 로짓은 컨텍스트 및 기존 지식 값을 기반으로 이 상황 발생에 대한 LLM의 추정치를 나타냅니다.

    앞에 이미지 입력을 추가하면 추가 상황 정보를 제공하는 것과 같습니다. 이 경우 각 텍스트 토큰의 로짓은 새로운 상황에 따라 조정됩니다. 이 두 경우의 로짓 변경은 각 텍스트 토큰에 대한 그림의 새로운 조건의 영향을 나타냅니다.

      특히 훈련 과정에서 CAL은 이미지와 텍스트 시퀀스, 개별 텍스트 시퀀스를 각각 LLM(대형 언어 모델)에 입력하여 각 텍스트 토큰의 로짓을 얻습니다. 두 경우의 로짓 차이를 계산함으로써 이미지가 각 토큰에 미치는 영향을 측정할 수 있습니다. 로짓 차이가 클수록 이미지가 토큰에 미치는 영향이 커지므로 토큰이 이미지와 더 관련성이 높습니다. 아래 그림은 텍스트 토큰에 대한 로짓 차이 및 CAL 방법의 흐름도를 보여줍니다.对 그림 2: 왼쪽 그림은 두 가지 상황에서의 토큰 로짓 차이의 시각화입니다. 오른쪽 그림은 CAL 방법 프로세스의 시각화입니다. 주류 모델: MGM, MGM, 다양한 크기의 모델에서 성능 향상이 이루어졌습니다.
    • 다음 네 가지 검증 부분이 포함되어 있습니다.
    (1) CAL을 사용하는 모델은 다양한 벤치마크 지표에서 더 나은 성능을 발휘합니다.
    字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
    (2) 두 이미지-텍스트 쌍의 텍스트를 비율에 맞게 무작위로 교환하여 노이즈 데이터(이미지-텍스트 불일치) 배치를 생성하고 이를 모델 훈련에 사용합니다. 훈련 과정을 만듭니다. 더 강력한 데이터 소음 방지 성능을 갖습니다. 도 그림 3: 다양한 강도의 소음 훈련의 경우 CAL의 성능과 기준선

    (3) QA 사례의 답변 부분에서 그림 토큰의 주의 점수를 계산하고 이를 플롯팅합니다. 원본 이미지에서 CAL 훈련 모델은 더 명확한 주의 분포 맵을 갖습니다.

    C 그림 4: 기준선과 CAL의 Attention Map을 시각화할 수 있습니다. 각 쌍의 오른쪽은 CAL
    (4)과 가장 유사한 LLM 어휘의 텍스트 토큰입니다. 원본 이미지에서는 CAL로 훈련된 모델 매핑 콘텐츠가 이미지 콘텐츠에 더 가깝습니다. ㅋㅋ ~ >

    字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
    Doubao Big Model 팀은 AI 분야에 대한 장기적인 비전과 의지를 가지고 있으며 연구 방향은 NLP, CV, 연설 등을 포함하며 중국에 실험실과 연구직이 있습니다. 싱가포르, 미국 및 기타 장소. 플랫폼의 충분한 데이터, 컴퓨팅 및 기타 리소스를 기반으로 팀은 자체 개발한 일반 대형 모델을 출시하여 다중 모드 기능을 제공하고 있으며 Doubao, Buttons 등 50개 이상의 비즈니스를 지원합니다. 및 Jimeng이며 Volcano Engine 고객을 통해 대중에게 공개됩니다. 현재 Doubao APP는 중국 시장에서 가장 많은 사용자를 보유한 AIGC 애플리케이션이 되었습니다. ByteDance Beanbao 모델 팀에 합류하신 것을 환영합니다.

위 내용은 Bytedance Doubao와 무한 대학은 CAL을 제안했습니다: 시각적으로 관련된 토큰을 통해 다중 모드 정렬 효과를 향상합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

ControlNet의 저자가 또 다른 히트를 쳤습니다! 이틀 만에 14,000개의 별을 획득하여 그림에서 그림을 생성하는 전체 과정 ControlNet의 저자가 또 다른 히트를 쳤습니다! 이틀 만에 14,000개의 별을 획득하여 그림에서 그림을 생성하는 전체 과정 Jul 17, 2024 am 01:56 AM

역시 Tusheng 영상이지만 PaintsUndo는 다른 경로를 택했습니다. ControlNet 작성자 LvminZhang이 다시 살기 시작했습니다! 이번에는 회화 분야를 목표로 삼고 있습니다. 새로운 프로젝트인 PaintsUndo는 출시된 지 얼마 되지 않아 1.4kstar(여전히 상승세)를 받았습니다. 프로젝트 주소: https://github.com/lllyasviel/Paints-UNDO 이 프로젝트를 통해 사용자는 정적 이미지를 입력하고 PaintsUndo는 자동으로 라인 초안부터 완성품 따라가기까지 전체 페인팅 과정의 비디오를 생성하도록 도와줍니다. . 그리는 과정에서 선의 변화가 놀랍습니다. 최종 영상 결과는 원본 이미지와 매우 유사합니다. 완성된 그림을 살펴보겠습니다.

오픈 소스 AI 소프트웨어 엔지니어 목록의 1위인 UIUC의 에이전트 없는 솔루션은 SWE 벤치의 실제 프로그래밍 문제를 쉽게 해결합니다. 오픈 소스 AI 소프트웨어 엔지니어 목록의 1위인 UIUC의 에이전트 없는 솔루션은 SWE 벤치의 실제 프로그래밍 문제를 쉽게 해결합니다. Jul 17, 2024 pm 10:02 PM

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 이 논문의 저자는 모두 일리노이 대학교 Urbana-Champaign(UIUC)의 Zhang Lingming 교사 팀 출신입니다. Steven Code Repair, 박사 4년차, 연구원

RLHF에서 DPO, TDPO까지 대규모 모델 정렬 알고리즘은 이미 '토큰 수준'입니다. RLHF에서 DPO, TDPO까지 대규모 모델 정렬 알고리즘은 이미 '토큰 수준'입니다. Jun 24, 2024 pm 03:04 PM

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 인공 지능 개발 과정에서 LLM(대형 언어 모델)의 제어 및 안내는 항상 핵심 과제 중 하나였으며 이러한 모델이 두 가지 모두를 보장하는 것을 목표로 했습니다. 강력하고 안전하게 인간 사회에 봉사합니다. 인간 피드백(RL)을 통한 강화 학습 방법에 초점을 맞춘 초기 노력

OpenAI Super Alignment Team의 사후 작업: 두 개의 대형 모델이 게임을 하고 출력이 더 이해하기 쉬워졌습니다. OpenAI Super Alignment Team의 사후 작업: 두 개의 대형 모델이 게임을 하고 출력이 더 이해하기 쉬워졌습니다. Jul 19, 2024 am 01:29 AM

AI 모델이 내놓은 답변이 전혀 이해하기 어렵다면 감히 사용해 보시겠습니까? 기계 학습 시스템이 더 중요한 영역에서 사용됨에 따라 우리가 그 결과를 신뢰할 수 있는 이유와 신뢰할 수 없는 경우를 보여주는 것이 점점 더 중요해지고 있습니다. 복잡한 시스템의 출력에 대한 신뢰를 얻는 한 가지 가능한 방법은 시스템이 인간이나 다른 신뢰할 수 있는 시스템이 읽을 수 있는 출력 해석을 생성하도록 요구하는 것입니다. 즉, 가능한 오류가 발생할 수 있는 지점까지 완전히 이해할 수 있습니다. 설립하다. 예를 들어, 사법 시스템에 대한 신뢰를 구축하기 위해 우리는 법원이 자신의 결정을 설명하고 뒷받침하는 명확하고 읽기 쉬운 서면 의견을 제공하도록 요구합니다. 대규모 언어 모델의 경우 유사한 접근 방식을 채택할 수도 있습니다. 그러나 이 접근 방식을 사용할 때는 언어 모델이 다음을 생성하는지 확인하세요.

arXiv 논문은 '연발'로 게시될 수 있습니다. Stanford alphaXiv 토론 플랫폼은 온라인이며 LeCun은 이를 좋아합니다. arXiv 논문은 '연발'로 게시될 수 있습니다. Stanford alphaXiv 토론 플랫폼은 온라인이며 LeCun은 이를 좋아합니다. Aug 01, 2024 pm 05:18 PM

건배! 종이 토론이 말로만 진행된다면 어떤가요? 최근 스탠포드 대학교 학생들은 arXiv 논문에 대한 질문과 의견을 직접 게시할 수 있는 arXiv 논문에 대한 공개 토론 포럼인 alphaXiv를 만들었습니다. 웹사이트 링크: https://alphaxiv.org/ 실제로 이 웹사이트를 특별히 방문할 필요는 없습니다. URL에서 arXiv를 alphaXiv로 변경하면 alphaXiv 포럼에서 해당 논문을 바로 열 수 있습니다. 논문, 문장: 오른쪽 토론 영역에서 사용자는 저자에게 논문의 아이디어와 세부 사항에 대해 질문하는 질문을 게시할 수 있습니다. 예를 들어 다음과 같이 논문 내용에 대해 의견을 제시할 수도 있습니다.

리만 가설의 중요한 돌파구! 타오저쉬안(Tao Zhexuan)은 MIT와 옥스퍼드의 새로운 논문을 적극 추천했으며, 37세의 필즈상 수상자도 참여했다. 리만 가설의 중요한 돌파구! 타오저쉬안(Tao Zhexuan)은 MIT와 옥스퍼드의 새로운 논문을 적극 추천했으며, 37세의 필즈상 수상자도 참여했다. Aug 05, 2024 pm 03:32 PM

최근 새천년 7대 과제 중 하나로 알려진 리만 가설이 새로운 돌파구를 마련했다. 리만 가설은 소수 분포의 정확한 특성과 관련된 수학에서 매우 중요한 미해결 문제입니다(소수는 1과 자기 자신으로만 나눌 수 있는 숫자이며 정수 이론에서 근본적인 역할을 합니다). 오늘날의 수학 문헌에는 리만 가설(또는 일반화된 형식)의 확립에 기초한 수학적 명제가 천 개가 넘습니다. 즉, 리만 가설과 그 일반화된 형식이 입증되면 천 개가 넘는 명제가 정리로 확립되어 수학 분야에 지대한 영향을 미칠 것이며, 리만 가설이 틀린 것으로 입증된다면, 이러한 제안의 일부도 그 효과를 잃을 것입니다. MIT 수학 교수 Larry Guth와 Oxford University의 새로운 돌파구

최초의 Mamba 기반 MLLM이 출시되었습니다! 모델 가중치, 학습 코드 등은 모두 오픈 소스입니다. 최초의 Mamba 기반 MLLM이 출시되었습니다! 모델 가중치, 학습 코드 등은 모두 오픈 소스입니다. Jul 17, 2024 am 02:46 AM

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 서문 최근 몇 년 동안 다양한 분야에서 MLLM(Multimodal Large Language Model)의 적용이 눈에 띄는 성공을 거두었습니다. 그러나 많은 다운스트림 작업의 기본 모델로서 현재 MLLM은 잘 알려진 Transformer 네트워크로 구성됩니다.

Axiom 교육을 통해 LLM은 인과 추론을 학습할 수 있습니다. 6,700만 개의 매개변수 모델은 1조 매개변수 수준 GPT-4와 비슷합니다. Axiom 교육을 통해 LLM은 인과 추론을 학습할 수 있습니다. 6,700만 개의 매개변수 모델은 1조 매개변수 수준 GPT-4와 비슷합니다. Jul 17, 2024 am 10:14 AM

LLM에 인과관계 사슬을 보여주면 공리를 학습합니다. AI는 이미 수학자 및 과학자의 연구 수행을 돕고 있습니다. 예를 들어, 유명한 수학자 Terence Tao는 GPT와 같은 AI 도구의 도움을 받아 자신의 연구 및 탐색 경험을 반복적으로 공유했습니다. AI가 이러한 분야에서 경쟁하려면 강력하고 신뢰할 수 있는 인과관계 추론 능력이 필수적입니다. 본 논문에서 소개할 연구에서는 작은 그래프의 인과 전이성 공리 시연을 위해 훈련된 Transformer 모델이 큰 그래프의 전이 공리로 일반화될 수 있음을 발견했습니다. 즉, Transformer가 단순한 인과 추론을 수행하는 방법을 학습하면 보다 복잡한 인과 추론에 사용될 수 있습니다. 팀이 제안하는 공리적 훈련 프레임워크는 시연만으로 패시브 데이터를 기반으로 인과 추론을 학습하는 새로운 패러다임입니다.

See all articles