기술 주변기기 일체 포함 딥러닝을 통한 이산시간 분기 예측

딥러닝을 통한 이산시간 분기 예측

Jul 16, 2024 pm 09:27 PM
이론

딥러닝을 통한 이산시간 분기 예측

Editor | 양배추 잎
많은 자연 및 인공 시스템은 중요한 전환, 즉 갑작스럽고 잠재적으로 위험한 역학 변화를 겪는 경향이 있습니다. 딥 러닝 분류기는 대규모 시뮬레이션 교육 데이터 세트에서 분기의 일반적인 특징을 학습하여 중요한 전환에 대한 조기 경고 신호를 제공할 수 있습니다. 지금까지 분류기는 이산시간 분기를 특징짓는 풍부한 역학을 무시하고 연속시간 분기를 예측하도록 훈련되었습니다.
여기서 McGill University의 Thomas M. Bury 연구팀은 코드차원 1의 5개 로컬 이산시간 분기에 대한 조기 경고 신호를 제공하도록 딥 러닝 분류기를 훈련했습니다. 그들은 생리학, 경제학, 생태학에서 사용되는 이산시간 모델의 시뮬레이션 데이터와 기간이 두 배로 늘어나는 분기를 겪는 자발적으로 박동하는 닭 심장 집합체의 실험 데이터를 사용하여 분류기를 테스트했습니다.
다양한 노이즈 강도와 가까운 분기율 전반에 걸쳐 이 분류기는 일반적으로 사용되는 조기 경고 신호보다 더 높은 민감도와 특이성을 나타냅니다. 또한 주기 배가 분기, Neimark-Sacker 분기 및 접는 분기에 대해 특히 높은 정확도로 대부분의 경우 올바른 분기를 예측할 수 있습니다.
이 연구는 "Deeping Discrete-Time Bifurcations with Deep Learning"이라는 제목으로 2023년 10월 10일 "Nature Communications"에 게재되었습니다.

딥러닝을 통한 이산시간 분기 예측

중요한 전환 및 조기 경고 신호(EWS)
  1. 중요한 전환:
  2. 시스템이 갑작스럽고 중요한 동적 변화를 경험하는 중요한 임계값입니다.
  3. 예: 심장 박동 변화, 금융 시장 붕괴, 생태계 붕괴.
  4. 분기 이론:
  5. 역치에서 질적 변화를 겪는 동적 시스템에 대한 연구입니다.
  6. 국지적 안정성 약화(감속)가 동반되어 노이즈 시계열 속성이 변경됩니다.
  7. 이러한 변경 사항은 EWS의 중요한 전환에 적용됩니다.
  8. 기존 EWS:
  9. 기후, 지질학, 생태 및 심장 시스템의 전환에 앞서 변동 및 시차 1 자기상관이 변경됩니다.
  10. 예측 기능은 제한되어 있으며 일부 시스템에서는 실패할 수 있습니다.
  11. 딥 러닝 EWS:
  12. 시계열을 기반으로 분기 유형을 예측하도록 신경망을 훈련합니다.
  13. 분지된 시뮬레이션을 통해 데이터베이스의 보편적인 기능을 알아보세요.
  14. 분기의 보편적 특성으로 인해 보이지 않는 시계열에 적합합니다.

이산시간 분기형 EWS

  • 이산시간 동적 시스템은 연속시간 동적 시스템과 다른 동작을 나타냅니다.
  • 이산 시간 분기는 생리학, 역학 및 경제학에서 자연스럽게 발생합니다.
  • 연구원들은 시뮬레이션 및 실험 데이터를 사용하여 이산시간 분기에서 딥 러닝 분류기의 성능을 테스트했습니다.

주기적 배가 분기:

  • 사건이 간격을 두고 교대로 발생하는 이산시간 분기의 유형입니다.
  • 둔화와 함께 분산 및 시차 1 자기상관에 체계적인 변화가 있습니다.
  • 닭 심장 응집체와 인간 심장에서 실험적으로 관찰되었으며 EWS에서 사용할 수 있습니다.

    딥러닝을 통한 이산시간 분기 예측

    그림: 칼륨 채널 차단제(E-4031, 1.5μmol)로 처리한 후 자발적으로 박동하는 배아 닭 심장 세포 응집체는 주기가 두 배로 증가하는 분기를 나타냅니다. (출처: 논문)

이산 시간 분기

이산 시간 분기에는 다양한 유형이 있으며 각각 관련 동적 변화가 있습니다. 최근 연구에서 Bury 팀은 공동차원 1의 5개 로컬 분기점에 중점을 두었습니다. "로컬" 경우 이러한 분기에는 심각한 속도 저하가 동반되므로 체계적 변동, 분산 및 자기상관이 예상됩니다.

예측 분기 유형

그러나 이러한 발산이 모두 중요한 전환으로 이어지는 것은 아닙니다. 대신, 교차하는 정상 상태(초임계) 또는 점진적으로 증가하는 진폭의 진동(초임계 Neimark-Sakr)으로 원활하게 전환할 수 있습니다. 분기 유형을 예측하면 분산과 자기상관만으로는 제공할 수 없는 분기 후 역학의 특성에 대한 정보를 얻을 수 있습니다.

딥 러닝 분류기

팀은 이산 시간 동적 시스템의 분기에 대한 특정 EWS를 제공하기 위해 딥 러닝 분류기를 훈련합니다. 그들은 고차항과 노이즈가 추가된 정규화된 방정식의 시뮬레이션 데이터를 사용하여 분류기를 훈련했습니다.

분류자 테스트

그런 다음 팀에서는 심장학, 생태학 및 경제학에 사용되는 5가지 이산 시간 모델의 시뮬레이션 실행에서 분류기를 테스트하고 상대 분산 및 지연 1 자기 상관 성능을 평가했습니다. EWS의 견고성은 모델 시뮬레이션에서 소음 진폭과 강제력 비율을 변경하여 평가됩니다.

실험적 검증

마지막으로 연구원들은 주기가 두 배로 늘어나는 분기를 겪는 닭 심장 응집체를 자발적으로 뛰는 실험 데이터를 사용하여 분류기를 테스트했습니다.

논문 링크:

https://www.nature.com/articles/s41467-023-42020-z

위 내용은 딥러닝을 통한 이산시간 분기 예측의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

'Defect Spectrum'은 기존 결함 감지의 경계를 뛰어넘어 초고정밀 및 풍부한 의미론적 산업 결함 감지를 최초로 달성합니다. 'Defect Spectrum'은 기존 결함 감지의 경계를 뛰어넘어 초고정밀 및 풍부한 의미론적 산업 결함 감지를 최초로 달성합니다. Jul 26, 2024 pm 05:38 PM

현대 제조업에서 정확한 결함 검출은 제품 품질을 보장하는 열쇠일 뿐만 아니라 생산 효율성을 향상시키는 핵심이기도 합니다. 그러나 기존 결함 감지 데이터세트는 실제 적용에 필요한 정확성과 의미론적 풍부함이 부족한 경우가 많아 모델이 특정 결함 카테고리나 위치를 식별할 수 없게 됩니다. 이 문제를 해결하기 위해 광저우 과학기술대학교와 Simou Technology로 구성된 최고 연구팀은 산업 결함에 대한 상세하고 의미론적으로 풍부한 대규모 주석을 제공하는 "DefectSpectrum" 데이터 세트를 혁신적으로 개발했습니다. 표 1에서 볼 수 있듯이, 다른 산업 데이터 세트와 비교하여 "DefectSpectrum" 데이터 세트는 가장 많은 결함 주석(5438개의 결함 샘플)과 가장 상세한 결함 분류(125개의 결함 카테고리)를 제공합니다.

수백만 개의 결정 데이터로 훈련하여 결정학적 위상 문제를 해결하는 딥러닝 방법인 PhAI가 Science에 게재되었습니다. 수백만 개의 결정 데이터로 훈련하여 결정학적 위상 문제를 해결하는 딥러닝 방법인 PhAI가 Science에 게재되었습니다. Aug 08, 2024 pm 09:22 PM

Editor |KX 오늘날까지 단순한 금속부터 큰 막 단백질에 이르기까지 결정학을 통해 결정되는 구조적 세부 사항과 정밀도는 다른 어떤 방법과도 비교할 수 없습니다. 그러나 가장 큰 과제인 소위 위상 문제는 실험적으로 결정된 진폭에서 위상 정보를 검색하는 것입니다. 덴마크 코펜하겐 대학의 연구원들은 결정 위상 문제를 해결하기 위해 PhAI라는 딥러닝 방법을 개발했습니다. 수백만 개의 인공 결정 구조와 그에 상응하는 합성 회절 데이터를 사용하여 훈련된 딥러닝 신경망은 정확한 전자 밀도 맵을 생성할 수 있습니다. 연구는 이 딥러닝 기반의 순순한 구조 솔루션 방법이 단 2옹스트롬의 해상도로 위상 문제를 해결할 수 있음을 보여줍니다. 이는 원자 해상도에서 사용할 수 있는 데이터의 10~20%에 해당하는 반면, 기존의 순순한 계산은

NVIDIA 대화 모델 ChatQA는 버전 2.0으로 발전했으며 컨텍스트 길이는 128K로 언급되었습니다. NVIDIA 대화 모델 ChatQA는 버전 2.0으로 발전했으며 컨텍스트 길이는 128K로 언급되었습니다. Jul 26, 2024 am 08:40 AM

오픈 LLM 커뮤니티는 백개의 꽃이 피어 경쟁하는 시대입니다. Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 등을 보실 수 있습니다. 훌륭한 연기자. 그러나 GPT-4-Turbo로 대표되는 독점 대형 모델과 비교하면 개방형 모델은 여전히 ​​많은 분야에서 상당한 격차를 보이고 있습니다. 일반 모델 외에도 프로그래밍 및 수학을 위한 DeepSeek-Coder-V2, 시각 언어 작업을 위한 InternVL과 같이 핵심 영역을 전문으로 하는 일부 개방형 모델이 개발되었습니다.

Google AI가 IMO 수학 올림피아드 은메달을 획득하고 수학적 추론 모델 AlphaProof가 출시되었으며 강화 학습이 다시 시작되었습니다. Google AI가 IMO 수학 올림피아드 은메달을 획득하고 수학적 추론 모델 AlphaProof가 출시되었으며 강화 학습이 다시 시작되었습니다. Jul 26, 2024 pm 02:40 PM

AI의 경우 수학 올림피아드는 더 이상 문제가 되지 않습니다. 목요일에 Google DeepMind의 인공 지능은 AI를 사용하여 올해 국제 수학 올림피아드 IMO의 실제 문제를 해결하는 위업을 달성했으며 금메달 획득에 한 걸음 더 다가섰습니다. 지난 주 막 끝난 IMO 대회에는 대수학, 조합론, 기하학, 수론 등 6개 문제가 출제됐다. 구글이 제안한 하이브리드 AI 시스템은 4문제를 맞혀 28점을 얻어 은메달 수준에 이르렀다. 이달 초 UCLA 종신 교수인 테렌스 타오(Terence Tao)가 상금 100만 달러의 AI 수학 올림피아드(AIMO Progress Award)를 추진했는데, 예상외로 7월 이전에 AI 문제 해결 수준이 이 수준으로 향상됐다. IMO에서 동시에 질문을 해보세요. 가장 정확하게 하기 어려운 것이 IMO인데, 역사도 가장 길고, 규모도 가장 크며, 가장 부정적이기도 합니다.

PRO | MoE 기반의 대형 모델이 더 주목받는 이유는 무엇인가요? PRO | MoE 기반의 대형 모델이 더 주목받는 이유는 무엇인가요? Aug 07, 2024 pm 07:08 PM

2023년에는 AI의 거의 모든 분야가 전례 없는 속도로 진화하고 있다. 동시에 AI는 구체화된 지능, 자율주행 등 핵심 트랙의 기술적 한계를 지속적으로 확장하고 있다. 멀티모달 추세 하에서 AI 대형 모델의 주류 아키텍처인 Transformer의 상황이 흔들릴까요? MoE(Mixed of Experts) 아키텍처를 기반으로 한 대형 모델 탐색이 업계에서 새로운 트렌드가 된 이유는 무엇입니까? 대형 비전 모델(LVM)이 일반 비전 분야에서 새로운 돌파구가 될 수 있습니까? ...지난 6개월 동안 공개된 본 사이트의 2023 PRO 회원 뉴스레터에서 위 분야의 기술 동향과 산업 변화에 대한 심층 분석을 제공하여 새로운 환경에서 귀하의 목표 달성에 도움이 되는 10가지 특별 해석을 선택했습니다. 년. 준비하세요. 이 해석은 2023년 50주차에 나온 것입니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

정확도는 60.8%에 달합니다. Transformer를 기반으로 한 Zhejiang University의 화학적 역합성 예측 모델은 Nature 저널에 게재되었습니다. 정확도는 60.8%에 달합니다. Transformer를 기반으로 한 Zhejiang University의 화학적 역합성 예측 모델은 Nature 저널에 게재되었습니다. Aug 06, 2024 pm 07:34 PM

Editor | KX 역합성은 약물 발견 및 유기 합성에서 중요한 작업이며, 프로세스 속도를 높이기 위해 AI가 점점 더 많이 사용되고 있습니다. 기존 AI 방식은 성능이 만족스럽지 못하고 다양성이 제한적입니다. 실제로 화학 반응은 종종 반응물과 생성물 사이에 상당한 중복이 발생하는 국지적인 분자 변화를 일으킵니다. 이에 영감을 받아 Zhejiang University의 Hou Tingjun 팀은 단일 단계 역합성 예측을 분자 문자열 편집 작업으로 재정의하고 표적 분자 문자열을 반복적으로 정제하여 전구체 화합물을 생성할 것을 제안했습니다. 그리고 고품질의 다양한 예측이 가능한 편집 기반 역합성 모델 EditRetro를 제안합니다. 광범위한 실험을 통해 이 모델은 표준 벤치마크 데이터 세트 USPTO-50 K에서 60.8%의 상위 1 정확도로 탁월한 성능을 달성하는 것으로 나타났습니다.

자연의 관점: 의학 분야의 인공지능 테스트는 혼란에 빠졌습니다. 어떻게 해야 할까요? 자연의 관점: 의학 분야의 인공지능 테스트는 혼란에 빠졌습니다. 어떻게 해야 할까요? Aug 22, 2024 pm 04:37 PM

Editor | ScienceAI 제한된 임상 데이터를 기반으로 수백 개의 의료 알고리즘이 승인되었습니다. 과학자들은 누가 도구를 테스트해야 하며 최선의 방법은 무엇인지에 대해 토론하고 있습니다. 데빈 싱(Devin Singh)은 응급실에서 오랜 시간 치료를 기다리던 중 심장마비를 겪는 소아환자를 목격했고, 이를 계기로 대기시간을 단축하기 위해 AI 적용을 모색하게 됐다. SickKids 응급실의 분류 데이터를 사용하여 Singh과 동료들은 잠재적인 진단을 제공하고 테스트를 권장하는 일련의 AI 모델을 구축했습니다. 한 연구에 따르면 이러한 모델은 의사 방문 속도를 22.3% 단축하여 의료 검사가 필요한 환자당 결과 처리 속도를 거의 3시간 단축할 수 있는 것으로 나타났습니다. 그러나 인공지능 알고리즘의 연구 성공은 이를 입증할 뿐이다.

See all articles