기술 주변기기 일체 포함 대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

Jul 18, 2024 pm 02:43 PM
산업 EAGLE

大規模言語モデル (LLM) はさまざまな分野でますます使用されています。ただし、テキスト生成プロセスは高価で時間がかかります。この非効率性は、自己回帰デコードのアルゴリズムに起因します。各単語 (トークン) の生成には前方パスが必要であり、数十億から数千億のパラメータを持つ LLM へのアクセスが必要です。その結果、従来の自己回帰デコードが遅くなります。

最近、ウォータールー大学、カナダベクトル研究所、北京大学、その他の機関が共同で EAGLE をリリースしました。これは、モデル出力テキストの一貫した配布を確保しながら、大規模な言語モデルの推論速度を向上させることを目的としています。この方法は、LLM の 2 番目のトップレベルの特徴ベクトルを外挿し、生成効率を大幅に向上させることができます。

대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

  • 技術レポート: https://sites.google.com/view/eagle-llm
  • コード (商用 Apache 2.0 をサポート): https://github.com/SafeAILab/EAGLE

EAGLE には次の機能があります:

  • 通常の自己回帰デコード (13B) よりも 3 倍高速です。
  • Lookahead デコード (13B) よりも 2 倍高速です。
    メデューサデコードより(13B) 1.6 倍高速;
  • は、生成されたテキストの配布で通常のデコードと一致していることが証明でき、RTX 3090 でテストできます。
  • vLLM、DeepSpeed、Mamba、FlashAttendant、量子化、ハードウェア最適化などの他の並列テクノロジと組み合わせて使用​​できます。
  • 自己回帰デコードを高速化する 1 つの方法は、投機的サンプリングです。この手法では、より小さなドラフト モデルを使用して、標準の自己回帰生成によって次の複数の単語を推測します。元の LLM は、これらの推測された単語を並行して検証します (検証に必要な前方パスは 1 つだけです)。ドラフト モデルが α ワードを正確に予測する場合、元の LLM の 1 回の順方向パスで α+1 ワードを生成できます。
대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.推測的サンプリングでは、ドラフト モデルのタスクは、現在の単語シーケンスに基づいて次の単語を予測することです。パラメーターの数が大幅に少ないモデルを使用してこのタスクを実行することは非常に困難であり、最適とはいえない結果が得られることがよくあります。さらに、標準的な投機的サンプリング アプローチのドラフト モデルは、元の LLM によって抽出された豊富な意味情報を利用せずに次の単語を独立して予測するため、潜在的に非効率になります。
この制限は EAGLE の開発にインスピレーションを与えました。 EAGLE は、元の LLM によって抽出されたコンテキスト特徴 (つまり、モデルの 2 番目の最上層によって出力された特徴ベクトル) を利用します。 EAGLE は次の第一原則に基づいて構築されています:

特徴ベクトル シーケンスは圧縮可能であるため、以前の特徴ベクトルに基づいて後続の特徴ベクトルを予測することが容易になります。

EAGLE は、自動回帰ヘッドと呼ばれる軽量プラグインをトレーニングします。このプラグインは、単語埋め込み層と連携して、現在の特徴シーケンスに基づいて、元のモデルの 2 番目の最上層から次の特徴を予測します。次に、元の LLM の凍結された分類頭部を使用して、次の単語が予測されます。特徴には単語シーケンスよりも多くの情報が含まれるため、特徴を回帰するタスクは単語を予測するタスクよりもはるかに簡単になります。要約すると、EAGLE は小さな自己回帰ヘッドを使用して特徴レベルで外挿し、次に凍結分類ヘッドを利用して予測単語シーケンスを生成します。 Speculative Sampling、Medusa、Lookahead などの同様の作業と同様に、EAGLE はシステム全体のスループットではなく、キューごとの推論のレイテンシーに焦点を当てています。

EAGLE - 大規模言語モデル生成の効率を高める方法

위 그림은 EAGLE과 표준 추측 샘플링, Medusa 및 Lookahead 간의 입력 및 출력 차이를 보여줍니다. 아래 그림은 EAGLE의 작업 흐름을 보여줍니다. 원래 LLM의 순방향 전달에서 EAGLE은 두 번째 최상위 계층에서 기능을 수집합니다. 자동회귀 헤드는 이러한 특징과 이전에 생성된 단어의 단어 임베딩을 입력으로 사용하고 다음 단어를 추측하기 시작합니다. 이어서, 고정 분류 헤드(LM Head)를 사용하여 다음 단어의 분포를 결정하고 EAGLE이 이 분포에서 샘플링할 수 있도록 합니다. EAGLE은 샘플링을 여러 번 반복함으로써 아래 그림의 오른쪽과 같이 트리형 생성 프로세스를 수행합니다. 이 예에서 EAGLE의 트리플 포워드 패스는 10개 단어로 구성된 트리를 "추측"했습니다.

대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

EAGLE은 경량 자동 회귀 헤드를 사용하여 원래 LLM의 기능을 예측합니다. 생성된 텍스트 분포의 일관성을 보장하기 위해 EAGLE은 예측된 트리 구조를 검증합니다. 이 확인 프로세스는 정방향 전달을 사용하여 완료할 수 있습니다. 이러한 예측과 검증의 순환을 통해 EAGLE은 텍스트 단어를 빠르게 생성할 수 있습니다.

자기회귀 머리를 훈련하는 데 드는 비용은 매우 적습니다. EAGLE은 70,000회 미만의 대화 라운드가 포함된 ShareGPT 데이터 세트를 사용하여 교육되었습니다. 자동회귀 헤드의 훈련 가능한 매개변수 수도 매우 적습니다. 위 이미지에서 파란색으로 표시된 것처럼 대부분의 구성요소가 동결되어 있습니다. 필요한 유일한 추가 훈련은 0.24B-0.99B 매개변수를 가진 단일 레이어 Transformer 구조인 자동회귀 헤드입니다. GPU 리소스가 제한된 경우에도 자동회귀 헤드를 훈련할 수 있습니다. 예를 들어, Vicuna 33B의 자동 회귀 회귀는 8카드 RTX 3090 서버에서 24시간 내에 학습될 수 있습니다.

특징을 ​​예측하기 위해 단어 임베딩을 사용하는 이유는 무엇인가요?

Medusa는 다음 단어, 다음 단어를 예측하기 위해 두 번째 상위 레이어의 기능만 사용합니다. Medusa와 달리 EAGLE은 예측을 위한 자동 회귀 헤드 입력 부분으로 현재 샘플링된 단어 임베딩도 동적으로 사용합니다. 이 추가 정보는 EAGLE이 샘플링 프로세스에서 불가피한 무작위성을 처리하는 데 도움이 됩니다. 프롬프트 단어가 "I"라고 가정하고 아래 이미지의 예를 살펴보세요. LLM은 "I" 뒤에 "am" 또는 "always"가 올 확률을 제공합니다. Medusa는 "am" 또는 "always"가 샘플링되는지 여부를 고려하지 않고 "I" 아래의 다음 단어가 나올 확률을 직접 예측합니다. 따라서 메두사의 목표는 "나"만 주어서 "나는" 또는 "나는 항상"에 대한 다음 단어를 예측하는 것입니다. 샘플링 프로세스의 무작위 특성으로 인해 Medusa에 대한 동일한 입력 "I"는 다음 단어 출력 "준비" 또는 "시작"이 다를 수 있으므로 입력과 출력 간의 일관된 매핑이 부족할 수 있습니다. 이와 대조적으로 EAGLE에 대한 입력에는 샘플링된 결과의 단어 임베딩이 포함되어 입력과 출력 간의 일관된 매핑을 보장합니다. 이러한 구별을 통해 EAGLE은 샘플링 프로세스에서 설정된 컨텍스트를 고려하여 후속 단어를 보다 정확하게 예측할 수 있습니다.

대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

트리형 생성 구조

추측 샘플링, Lookahead 및 Medusa와 같은 다른 추측 검증 프레임워크와 달리 EAGLE은 "추측 단어" 단계에서 트리형 생성 구조를 채택하므로 더 높은 디코딩 효율을 달성합니다. 그림에서 볼 수 있듯이 표준 추측 샘플링과 Lookahead의 생성 프로세스는 선형 또는 체인입니다. 추측 단계에서는 컨텍스트를 구성할 수 없기 때문에 Medusa의 방법은 데카르트 곱을 통해 트리를 생성하여 인접한 레이어 간에 완전히 연결된 그래프를 생성합니다. 이 접근 방식은 종종 "나는 시작합니다"와 같은 의미 없는 조합을 초래합니다. 이와 대조적으로 EAGLE은 더 희박한 트리 구조를 생성합니다. 이 희소 트리 구조는 의미 없는 시퀀스의 형성을 방지하고 보다 합리적인 단어 조합에 컴퓨팅 리소스를 집중시킵니다.

대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

다중 추측 샘플링

표준 추측 샘플링 방법은 "단어 추측" 과정에서 분포의 일관성을 유지합니다. 트리형 단어 추측 시나리오에 적응하기 위해 EAGLE은 이 방법을 다중 라운드 재귀 형식으로 확장합니다. 여러 라운드의 추측 샘플링에 대한 의사 코드가 아래에 나와 있습니다. 트리 생성 과정에서 EAGLE은 샘플링된 각 단어에 해당하는 확률을 기록합니다. EAGLE은 여러 라운드의 추측 샘플링을 통해 각 단어의 최종 생성된 분포가 원래 LLM의 분포와 일치하는지 확인합니다.

대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

更多实验结果

下图展示了 EAGLE 在 Vicuna 33B 上关于不同任务中的加速效果。涉及大量固定模板的 “编程”(coding)任务显示出最佳的加速性能。

대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.

欢迎大家体验 EAGLE,并通过 GitHub issue 反馈建议:https://github.com/SafeAILab/EAGLE/issues

위 내용은 대형 모델의 추론 효율성이 손실 없이 3배 향상되었습니다. 워털루 대학교, 북경 대학교 및 기타 기관에서 EAGLE을 출시했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
<exp exp> 모호한 : 원정 33- 완벽한 크로마 촉매를 얻는 방법
2 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. 딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. Aug 09, 2024 pm 04:01 PM

하지만 공원에 있는 노인을 이길 수는 없을까요? 파리올림픽이 본격화되면서 탁구가 많은 주목을 받고 있다. 동시에 로봇은 탁구 경기에서도 새로운 돌파구를 마련했습니다. 방금 DeepMind는 탁구 경기에서 인간 아마추어 선수 수준에 도달할 수 있는 최초의 학습 로봇 에이전트를 제안했습니다. 논문 주소: https://arxiv.org/pdf/2408.03906 DeepMind 로봇은 탁구를 얼마나 잘 치나요? 아마도 인간 아마추어 선수들과 동등할 것입니다: 포핸드와 백핸드 모두: 상대는 다양한 플레이 스타일을 사용하고 로봇도 견딜 수 있습니다: 다양한 스핀으로 서브를 받습니다. 그러나 게임의 강도는 그만큼 강렬하지 않은 것 같습니다. 공원에 있는 노인. 로봇용, 탁구용

최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. 최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. Aug 21, 2024 pm 07:33 PM

8월 21일, 2024년 세계로봇대회가 베이징에서 성대하게 개최되었습니다. SenseTime의 홈 로봇 브랜드 "Yuanluobot SenseRobot"은 전체 제품군을 공개했으며, 최근에는 Yuanluobot AI 체스 두는 로봇인 체스 프로페셔널 에디션(이하 "Yuanluobot SenseRobot")을 출시하여 세계 최초의 A 체스 로봇이 되었습니다. 집. Yuanluobo의 세 번째 체스 게임 로봇 제품인 새로운 Guoxiang 로봇은 AI 및 엔지니어링 기계 분야에서 수많은 특별한 기술 업그레이드와 혁신을 거쳤으며 처음으로 3차원 체스 말을 집는 능력을 실현했습니다. 가정용 로봇의 기계 발톱을 통해 체스 게임, 모두 체스 게임, 기보 복습 등과 같은 인간-기계 기능을 수행합니다.

클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 Sep 02, 2024 pm 01:56 PM

개학이 코앞으로 다가왔습니다. 새 학기를 앞둔 학생들뿐만 아니라 대형 AI 모델도 스스로 관리해야 합니다. 얼마 전 레딧에는 클로드가 게으르다고 불평하는 네티즌들이 붐볐습니다. "레벨이 많이 떨어졌고, 자주 멈췄고, 심지어 출력도 매우 짧아졌습니다. 출시 첫 주에는 4페이지 전체 문서를 한 번에 번역할 수 있었지만 지금은 반 페이지도 출력하지 못합니다. !" https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ "클로드에게 완전히 실망했습니다"라는 제목의 게시물에

세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. 세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. Aug 22, 2024 pm 10:35 PM

베이징에서 열린 세계로봇컨퍼런스에서는 휴머노이드 로봇의 전시가 현장의 절대 화두가 됐다. 스타더스트 인텔리전트 부스에서는 AI 로봇 어시스턴트 S1이 덜시머, 무술, 서예 3대 퍼포먼스를 선보였다. 문학과 무술을 모두 갖춘 하나의 전시 공간은 수많은 전문 관객과 미디어를 끌어 모았습니다. 탄력 있는 현의 우아한 연주를 통해 S1은 정밀한 작동과 속도, 힘, 정밀성을 갖춘 절대적인 제어력을 보여줍니다. CCTV 뉴스는 '서예'의 모방 학습 및 지능형 제어에 대한 특별 보도를 진행했습니다. 회사 설립자 Lai Jie는 부드러운 움직임 뒤에 하드웨어 측면이 최고의 힘 제어와 가장 인간과 유사한 신체 지표(속도, 하중)를 추구한다고 설명했습니다. 등)이지만 AI측에서는 사람의 실제 움직임 데이터를 수집해 로봇이 강한 상황에 직면했을 때 더욱 강해지고 빠르게 진화하는 방법을 학습할 수 있다. 그리고 민첩하다

ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

참가자들은 이번 ACL 컨퍼런스에서 많은 것을 얻었습니다. ACL2024는 6일간 태국 방콕에서 개최됩니다. ACL은 전산언어학 및 자연어 처리 분야 최고의 국제학술대회로 국제전산언어학회(International Association for Computational Linguistics)가 주최하고 매년 개최된다. ACL은 NLP 분야에서 학술 영향력 1위를 항상 차지하고 있으며, CCF-A 추천 컨퍼런스이기도 합니다. 올해로 62회째를 맞이하는 ACL 컨퍼런스에는 NLP 분야의 최신 저서가 400편 이상 접수됐다. 어제 오후 컨퍼런스에서는 최우수 논문과 기타 상을 발표했습니다. 이번에 최우수논문상 7개(미출판 2개), 우수주제상 1개, 우수논문상 35개가 있다. 이 컨퍼런스에서는 또한 3개의 리소스 논문상(ResourceAward)과 사회적 영향상(Social Impact Award)을 수상했습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Sep 03, 2024 pm 05:18 PM

비전과 로봇 학습의 긴밀한 통합. 최근 화제를 모으고 있는 1X 휴머노이드 로봇 네오(NEO)와 두 개의 로봇 손이 원활하게 협력해 옷 개기, 차 따르기, 신발 싸기 등을 하는 모습을 보면 마치 로봇 시대로 접어들고 있다는 느낌을 받을 수 있다. 실제로 이러한 부드러운 움직임은 첨단 로봇 기술 + 정교한 프레임 디자인 + 다중 모드 대형 모델의 산물입니다. 우리는 유용한 로봇이 종종 환경과 복잡하고 절묘한 상호작용을 요구한다는 것을 알고 있으며, 환경은 공간적, 시간적 영역에서 제약으로 표현될 수 있습니다. 예를 들어, 로봇이 차를 따르도록 하려면 먼저 로봇이 찻주전자 손잡이를 잡고 차를 흘리지 않고 똑바로 세운 다음, 주전자 입구와 컵 입구가 일치할 때까지 부드럽게 움직여야 합니다. 을 누른 다음 주전자를 특정 각도로 기울입니다. 이것

분산 인공지능 컨퍼런스 DAI 2024 Call for Papers: Agent Day, 강화학습의 아버지 Richard Sutton이 참석합니다! Yan Shuicheng, Sergey Levine 및 DeepMind 과학자들이 기조 연설을 할 예정입니다. 분산 인공지능 컨퍼런스 DAI 2024 Call for Papers: Agent Day, 강화학습의 아버지 Richard Sutton이 참석합니다! Yan Shuicheng, Sergey Levine 및 DeepMind 과학자들이 기조 연설을 할 예정입니다. Aug 22, 2024 pm 08:02 PM

컨퍼런스 소개 과학기술의 급속한 발전과 함께 인공지능은 사회 발전을 촉진하는 중요한 힘이 되었습니다. 이 시대에 우리는 분산인공지능(DAI)의 혁신과 적용을 목격하고 참여할 수 있어 행운입니다. 분산 인공지능(Distributed Artificial Intelligence)은 인공지능 분야의 중요한 한 분야로, 최근 몇 년간 점점 더 많은 주목을 받고 있습니다. 대규모 언어 모델(LLM) 기반 에이전트가 갑자기 등장했습니다. 대규모 모델의 강력한 언어 이해와 생성 기능을 결합하여 자연어 상호 작용, 지식 추론, 작업 계획 등에 큰 잠재력을 보여주었습니다. AIAgent는 빅 언어 모델을 이어받아 현재 AI계에서 화제가 되고 있습니다. 오

홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 Aug 08, 2024 am 07:02 AM

오늘 오후 Hongmeng Zhixing은 공식적으로 새로운 브랜드와 신차를 환영했습니다. 8월 6일, Huawei는 Hongmeng Smart Xingxing S9 및 Huawei 전체 시나리오 신제품 출시 컨퍼런스를 개최하여 파노라마식 스마트 플래그십 세단 Xiangjie S9, 새로운 M7Pro 및 Huawei novaFlip, MatePad Pro 12.2인치, 새로운 MatePad Air, Huawei Bisheng을 선보였습니다. 레이저 프린터 X1 시리즈, FreeBuds6i, WATCHFIT3 및 스마트 스크린 S5Pro를 포함한 다양한 새로운 올-시나리오 스마트 제품, 스마트 여행, 스마트 오피스, 스마트 웨어에 이르기까지 화웨이는 풀 시나리오 스마트 생태계를 지속적으로 구축하여 소비자에게 스마트한 경험을 제공합니다. 만물인터넷. Hongmeng Zhixing: 스마트 자동차 산업의 업그레이드를 촉진하기 위한 심층적인 권한 부여 화웨이는 중국 자동차 산업 파트너와 손을 잡고

See all articles