백엔드 개발 파이썬 튜토리얼 확률을 뛰어넘다: 카지노 이익 뒤에 숨은 수학

확률을 뛰어넘다: 카지노 이익 뒤에 숨은 수학

Jul 18, 2024 pm 10:10 PM

카지노가 항상 승리하는 것처럼 보이는 이유가 궁금하신가요? "승률 극복: 카지노 이익 뒤에 숨은 수학"에서는 카지노가 장기적으로 수익을 창출할 수 있도록 하는 간단한 수학과 기발한 전략을 살펴보겠습니다. 이해하기 쉬운 예와 몬테카를로 시뮬레이션을 통해 집 가장자리 뒤에 숨겨진 비밀을 밝혀내겠습니다. 카지노가 어떻게 승률을 유리하게 바꾸는지 알아보세요!

하우스 엣지 이해하기

하우스 엣지는 카지노 세계의 기본 개념입니다. 이는 카지노가 플레이어의 각 베팅에서 얻을 것으로 기대하는 평균 이익을 나타냅니다. 본질적으로 카지노가 장기적으로 유지하게 될 각 베팅의 비율입니다.

카지노에서는 게임의 '실제 확률'에 따라 승리한 베팅을 지급하지 않기 때문에 하우스 에지가 존재합니다. 실제 확률은 사건이 발생할 실제 확률을 나타냅니다. 약간 낮은 확률로 지불함으로써 카지노는 시간이 지남에 따라 이익을 얻을 수 있습니다.

하우스 에지(HE)는 플레이어가 원래 베팅한 금액의 백분율로 표시되는 카지노 수익으로 정의됩니다.

** 유럽식 룰렛**에는 녹색 0이 하나만 있어 총 37개의 숫자가 제공됩니다. 플레이어가 빨간색에 1달러를 걸면 1달러를 얻을 확률은 18/37이고 1달러를 잃을 확률은 19/37입니다. 예상 값은 다음과 같습니다.

기대값=( 1 × 18/37 ​)+( −1 × 19/37 ​)= 18/37​ − 19/37​ = −1/37 ​≒ −2.7%

따라서 유럽식 룰렛에서 하우스 에지(HE)는 2.7%

정도입니다.

더 이해하기 쉽게 우리만의 게임, 간단한 주사위 굴리기 게임을 만들어 보겠습니다.

import random

def roll_dice():
    roll = random.randint(1, 100)

    if roll == 100:
        print(roll, 'You rolled a 100 and lost. Better luck next time!')
        return False
    elif roll <= 50:
        print(roll, 'You rolled between 1 and 50 and lost.')
        return False
    else:
        print(roll, 'You rolled between 51 and 99 and won! Keep playing!')
        return True
로그인 후 복사

이 게임의 내용:

  • 롤이 100이면 패배할 확률은 1/100입니다.

  • 롤이 1에서 50 사이인 경우 플레이어의 패배 확률은 50/100입니다.

  • 롤이 51에서 99 사이인 경우 플레이어의 승리 확률은 49/100입니다.

예상 값 =(1× 49/100​) + ( −1× 51/100​) = 49/100​ − 51/100 ​= −2/100 ​ ≒ −2%

따라서 하우스 에지는 2%

입니다.

몬테카를로 시뮬레이션 이해

몬테카를로 시뮬레이션은 프로세스에 대한 수많은 시뮬레이션을 실행하고 결과를 관찰하여 복잡한 시스템을 이해하고 예측하는 데 사용되는 강력한 도구입니다. 카지노의 맥락에서 몬테카를로 시뮬레이션은 다양한 베팅 시나리오를 모델링하여 하우스 에지가 어떻게 장기적인 수익성을 보장하는지 보여줄 수 있습니다. 몬테카를로 시뮬레이션이 어떻게 작동하는지, 간단한 카지노 게임에 어떻게 적용할 수 있는지 살펴보겠습니다.

몬테카를로 시뮬레이션이란 무엇입니까?

몬테카를로 시뮬레이션에는 무작위 변수를 생성하여 프로세스를 여러 번 시뮬레이션하고 결과를 분석하는 작업이 포함됩니다. 수천 또는 수백만 번의 반복을 수행함으로써 가능한 결과의 분포를 얻고 다양한 이벤트의 가능성에 대한 통찰력을 얻을 수 있습니다.

주사위 굴리기 게임에 몬테카를로 시뮬레이션 적용

앞서 논의한 주사위 굴리기 게임을 모델링하기 위해 몬테카를로 시뮬레이션을 사용하겠습니다. 이는 시간이 지남에 따라 하우스 에지가 게임 수익성에 어떤 영향을 미치는지 이해하는 데 도움이 됩니다.

`def monte_carlo_simulation(trials):
    wins = 0
    losses = 0

    for _ in range(trials):
        if roll_dice():
            wins += 1
        else:
            losses += 1

    win_percentage = (wins / trials) * 100
    loss_percentage = (losses / trials) * 100
    houseEdge= loss_percentage-win_percentage
    print(f"After {trials} trials:")
    print(f"Win percentage: {win_percentage:.2f}%")
    print(f"Loss percentage: {loss_percentage:.2f}%")
    print(f"House Edge: {houseEdge:.2f}%")

# Run the simulation with 10,000,000 trials
monte_carlo_simulation(10000000)`
로그인 후 복사

결과 해석

이 시뮬레이션에서는 주사위 굴리기 게임을 10,000,000번 실행하여 승패 비율을 관찰합니다. 앞서 계산한 하우스 에지(2%)를 고려하면 패율이 승률보다 약간 높을 것으로 예상됩니다.

시뮬레이션을 실행한 후 다음과 같은 결과를 볼 수 있습니다.

Beating the Odds: The Mathematics Behind Casino Profits

이러한 결과는 이론적 확률(49% 승, 51% 패)과 밀접하게 일치하며, 다수의 시도에서 하우스 에지가 어떻게 나타나는지 보여줍니다. 약간의 불균형은 장기적으로 카지노의 수익성을 보장합니다.

단기 성공과 장기 손실 시각화

Monte Carlo 시뮬레이션은 반복되는 무작위 샘플링을 통해 결과를 모델링하고 예측하는 데 강력합니다. 도박의 맥락에서 몬테카를로 시뮬레이션을 사용하여 다양한 베팅 전략의 잠재적 결과를 이해할 수 있습니다.

매 라운드마다 동일한 초기 베팅을 하는 단일 베터를 시뮬레이션하고 지정된 베팅 횟수에 걸쳐 계정 가치가 어떻게 변화하는지 관찰하겠습니다.

Matplotlib을 사용하여 베팅 여정을 시뮬레이션하고 시각화하는 방법은 다음과 같습니다.

def bettor_simulation(funds, initial_wager, wager_count):
    value = funds
    wager = initial_wager

    # Lists to store wager count and account value
    wX = []
    vY = []

    current_wager = 1

    while current_wager <= wager_count:
        if roll_dice():
            value += wager
        else:
            value -= wager

        wX.append(current_wager)
        vY.append(value)
        current_wager += 1

    return wX, vY

# Parameters for simulation
funds = 10000
initial_wager = 100
wager_count = 1000

# Run the simulation for a single bettor
wager_counts, account_values = bettor_simulation(funds, initial_wager, wager_count)

# Plotting the results
plt.figure(figsize=(12, 6))
plt.plot(wager_counts, account_values, label='Bettor 1', color='blue')
plt.xlabel('Wager Count')
plt.ylabel('Account Value')
plt.title('Betting Journey: Short-Term Wins vs Long-Term Losses')
plt.grid(True)
plt.legend()

# Highlighting the short-term and long-term trend
plt.axhline(y=funds, color='gray', linestyle='--', label='Initial Funds')
plt.axhline(y=account_values[0], color='green', linestyle='--', label='Starting Account Value')
plt.axhline(y=account_values[-1], color='red', linestyle='--', label='Final Account Value')

plt.legend()
plt.show()
로그인 후 복사

Beating the Odds: The Mathematics Behind Casino Profits

이 그래프는 베터의 계정 가치가 승패에 따라 시간이 지남에 따라 어떻게 변동하는지 보여줍니다. 처음에는 승리하는 기간(시작 값 위의 녹색 선)이 있을 수 있지만 베팅 횟수가 증가함에 따라 하우스 에지의 누적 효과가 분명해집니다. 결국 베터의 계정 가치는 초기 자금(회색 선) 이하로 하락하는 경향이 있으며 이는 장기적인 손실을 나타냅니다.

결론

카지노 수익 이면의 수학을 이해하면 하우스 에지 개념을 통해 모든 게임에서 하우스의 명확한 이점을 알 수 있습니다. 가끔 승리하더라도 카지노 게임에 내재된 확률로 인해 대부분의 플레이어는 시간이 지남에 따라 돈을 잃을 수 있습니다. 몬테 카를로 시뮬레이션은 이러한 역학을 생생하게 보여주며, 카지노의 통계적 이점으로 인해 단기적인 승리가 어떻게 장기적인 손실을 가릴 수 있는지 보여줍니다. 카지노 수익성의 수학적 확실성에 대한 이러한 통찰력은 정보에 입각한 의사 결정과 책임감 있는 도박 관행의 중요성을 강조합니다.

다음으로 다양한 베팅 전략을 비교하거나 다양한 초기 베팅이 베터의 결과에 미치는 영향을 분석하는 등 추가 시각화 또는 변형을 탐색할 수 있습니다.

연결 상태 유지:

  • GitHub: ezhillragesh

  • 트위터: ezhillragesh

  • 웹사이트: ragesh.me

주저하지 말고 자신의 생각을 공유하고, 질문하고, 토론에 참여해 주세요.

즐거운 코딩하세요!

위 내용은 확률을 뛰어넘다: 카지노 이익 뒤에 숨은 수학의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

파이썬 : 게임, Guis 등 파이썬 : 게임, Guis 등 Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

See all articles