OpenDevin이 대형 모델 에이전트 개발자가 꼭 읽어야 할 기술 보고서를 발표했습니다.
인기 있는 범용 대형 모델 에이전트 플랫폼.
올해 3월, '세계 최초의 AI 소프트웨어 엔지니어' 데빈이 AI 서클을 폭발시켰습니다. 이전 AI 프로그래밍 도우미와 달리 Devin은 프로그래밍을 지원하는 역할을 수행하는 것이 아니라 전체 개발 프로젝트를 독립적으로 엔드 투 엔드로 완료할 수 있습니다.
Devin의 탄생을 통해 대형 모델 에이전트의 강력한 기능을 감상할 수 있습니다. 곧 이를 모방하려는 수많은 오픈소스 프로젝트가 업계에 등장했고, 그중 오픈데빈(OpenDevin)이 가장 눈에 띄었다.
OpenDevin은 소프트웨어를 통해 세계와 상호 작용하는 범용 에이전트를 개발하기 위한 플랫폼입니다.
대형 모델 에이전트, 인터페이스 및 환경 간의 상호 작용 메커니즘
에이전트 사용 가능 샌드박스 운영 시스템 + 웹 브라우저 환경
코드 생성 및 실행을 위한 인터페이스
평가 프레임워크.
현재 OpenDevin의 GitHub는 29,000개 이상의 별을 받았습니다.
기술 보고서에는 OpenDevin의 저자, 일리노이 대학교 어바나 샴페인, 카네기 멜론 대학교 및 기타 기관의 학자들이 OpenDevin을 소개했습니다. 구체적으로는 소프트웨어를 통해 세상과 소통하는 일반 및 전문 AI 에이전트 개발을 목표로 하는 커뮤니티 중심의 플랫폼이다.
더 중요한 것은 OpenDevin이 개념적 프레임워크일 뿐만 아니라 포괄적이고 즉시 사용 가능한 에이전트, 환경 및 평가 구현도 포함하고 있다는 것입니다. 이 보고서가 작성되는 시점을 기준으로 OpenDevin에는 CodeAct 아키텍처를 기반으로 구현된 강력한 일반 에이전트를 포함하여 10개 이상의 에이전트가 구현되었으며 웹 검색 및 코드 편집을 위한 추가 기능이 있는 에이전트 센터가 포함되어 있습니다. 에이전트와의 사용자 상호 작용은 에이전트의 현재 작업을 시각화하고 실시간 피드백을 허용하는 채팅 인터페이스를 통해 이루어집니다. 또한 평가 프레임워크는 현재 상담원 성과를 평가하는 데 사용할 수 있는 15개의 벤치마크를 지원합니다.
OpenDevin Architecture이 기사에서 저자는 다음 측면에서 OpenDevin을 설명합니다. (1) 에이전트를 정의하고 구현하는 방법 (2) 작업 실행이 관찰을 촉진하는 방법; 에이전트를 위한 도구 기술(4) 여러 에이전트를 결합하여 작업을 해결하는 방법.
에이전트 정의 및 구현 방법
에이전트는 환경의 상태를 감지하고 사용자가 지정한 작업을 해결할 때 수행할 작업을 생성할 수 있습니다. 상태 및 이벤트 스트리밍. OpenDevin에서 상태는 에이전트가 작업을 수행하는 데 필요한 모든 관련 정보를 캡슐화하는 데이터 구조입니다. 이 상태의 핵심 구성 요소는 과거 작업과 관찰 내용을 시간순으로 모아 놓은 이벤트 스트리밍입니다.
액션. CodeAct에서 영감을 받은 OpenDevin은 핵심 작업 세트를 통해 에이전트를 환경에 연결합니다. IPythonRunCellAction 및 CmdRunAction 작업을 통해 에이전트는 샌드박스 환경(예: 안전하게 격리된 Linux 운영 체제) 내에서 임의의 Python 코드 및 bash 명령을 실행할 수 있습니다. BrowserInteractiveAction을 사용하면 에이전트가 웹 브라우저와 상호 작용할 수 있습니다.
관찰하세요. 관찰은 에이전트가 관찰한 환경의 변화를 설명합니다. 이는 에이전트의 동작에 의해 발생할 수도 있고 아닐 수도 있습니다. 1) 사용자가 제공한 자연어 명령, 2) 에이전트의 이전 동작의 실행 결과(예: 코드 실행 결과 등)일 수 있습니다.
새로운 에이전트를 구현하세요. 에이전트 디자인은 간단하면서도 강력하므로 사용자는 다양한 작업을 위해 에이전트를 쉽게 만들고 사용자 지정할 수 있습니다. 핵심은 현재 상태를 입력으로 사용하고 에이전트의 논리에 따라 적절한 작업을 생성하는 단계 함수에 있습니다. 그림 2는 에이전트 추상화를 위한 단순화된 예제 코드를 보여줍니다.
액션 실행 결과 관찰
Agent Runtime은 에이전트에 인간 소프트웨어 개발자와 유사한 액션 공간을 제공하여 OpenDevin이 복잡한 소프트웨어 개발 작업을 포함한 다양한 소프트웨어 개발 및 웹 기반 작업을 처리할 수 있도록 합니다. , 데이터 분석 프로젝트, 웹 브라우징 작업 등이 있습니다. 이를 통해 에이전트는 bash 터미널에 액세스하여 코드 및 명령줄 도구를 실행하고, Jupyter 노트북을 활용하여 즉시 코드를 작성 및 실행하고, 웹 브라우저와 상호 작용하여 웹 기반 작업(예: 정보 검색)을 수행할 수 있습니다. Extensible Agent-Computer Interface Les auteurs ont construit une bibliothèque AgentSkills, une boîte à outils conçue pour améliorer les capacités des agents, fournissant des utilitaires non facilement disponibles avec les commandes bash de base ou le code python. Interaction multi-agents OpenDevin permet à plusieurs agents d'interagir. Pour y parvenir, les auteurs ont utilisé un type d'action spécial, AgentDelegateAction, qui permet à un agent de déléguer des sous-tâches spécifiques à un autre agent. Évaluation Cette section compare OpenDevin (abrégé en OD dans les résultats expérimentaux suivants) avec des méthodes de base reproductibles open source. Ces 15 benchmarks couvrent des tâches telles que l'ingénierie logicielle, la navigation Web, etc. Le tableau 3 montre que même si l'agent OpenDevin n'atteint pas des performances optimales dans chaque catégorie, il est conçu dans un souci de généralité. Le Tableau 4 rapporte les résultats de l'agent sur des benchmarks d'ingénierie logicielle. Plus précisément : SWE-bench est conçu pour évaluer la capacité d'un agent à résoudre les problèmes de GitHub, tels que les rapports de bogues ou les demandes de fonctionnalités. Comme le montre le tableau 4, la dernière version de CodeActAgent v1.8 présentée dans cet article, basée sur Claude-3.5-sonnet, présente un taux de résolution de problèmes allant jusqu'à 26 % par rapport à d'autres agents open source spécifiquement utilisés pour le développement de logiciels. HumanEvalFix. OpenDevin CodeActAgent a corrigé avec succès 79,3 % des erreurs dans les divisions Python, surpassant considérablement toutes les méthodes non-agent et doublant presque les performances de StarCoder2-15B. L'agent OpenDevin basé sur GPT-4o a atteint le taux de réussite le plus élevé de 76,47 % sur ML-Bench, ce qui est meilleur que SWE-Agent (42,64 %). Gorilla APIBench examine la capacité d'un agent à utiliser les API. OpenDevin utilisant GPT-4o atteint un taux de réussite de 36,4 %, surpassant les références qui ne sont pas spécifiquement adaptées aux appels d'API. ToolQA évalue la capacité d’un agent à utiliser des outils externes. OpenDevin avec GPT-4o affiche les performances les plus élevées par rapport à toutes les références. L'agent a obtenu de meilleurs résultats dans les tâches liées à l'utilisation des outils CSV et de base de données, mais avait besoin d'amélioration dans l'utilisation des outils mathématiques et de calculatrice. Le tableau 5 rapporte les résultats de l'évaluation sur le benchmark de navigation Web. Le tableau 6 présente les résultats de divers benchmarks auxiliaires. Parmi eux, GAIA est utilisé pour évaluer la capacité de l'agent à résoudre des tâches générales. Les résultats montrent que l'agent a obtenu un score de 32,1 sur GAIA, ce qui est significativement amélioré par rapport à l'AutoGPT d'origine. GPQA est utilisé pour évaluer la capacité d'un agent à coordonner l'utilisation d'outils tout en résolvant des problèmes difficiles de niveau universitaire. Les résultats sont présentés dans les tableaux 6 et 7. OpenDevin intègre des fonctions qui prennent en charge l'utilisation de plusieurs outils et de recherche sur le Web, permettant à l'agent de mieux résoudre des problèmes complexes en plusieurs étapes. Pour plus de résultats, veuillez vous référer à l'article original.
위 내용은 OpenDevin이 대형 모델 에이전트 개발자가 꼭 읽어야 할 기술 보고서를 발표했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











하지만 공원에 있는 노인을 이길 수는 없을까요? 파리올림픽이 본격화되면서 탁구가 많은 주목을 받고 있다. 동시에 로봇은 탁구 경기에서도 새로운 돌파구를 마련했습니다. 방금 DeepMind는 탁구 경기에서 인간 아마추어 선수 수준에 도달할 수 있는 최초의 학습 로봇 에이전트를 제안했습니다. 논문 주소: https://arxiv.org/pdf/2408.03906 DeepMind 로봇은 탁구를 얼마나 잘 치나요? 아마도 인간 아마추어 선수들과 동등할 것입니다: 포핸드와 백핸드 모두: 상대는 다양한 플레이 스타일을 사용하고 로봇도 견딜 수 있습니다: 다양한 스핀으로 서브를 받습니다. 그러나 게임의 강도는 그만큼 강렬하지 않은 것 같습니다. 공원에 있는 노인. 로봇용, 탁구용

8월 21일, 2024년 세계로봇대회가 베이징에서 성대하게 개최되었습니다. SenseTime의 홈 로봇 브랜드 "Yuanluobot SenseRobot"은 전체 제품군을 공개했으며, 최근에는 Yuanluobot AI 체스 두는 로봇인 체스 프로페셔널 에디션(이하 "Yuanluobot SenseRobot")을 출시하여 세계 최초의 A 체스 로봇이 되었습니다. 집. Yuanluobo의 세 번째 체스 게임 로봇 제품인 새로운 Guoxiang 로봇은 AI 및 엔지니어링 기계 분야에서 수많은 특별한 기술 업그레이드와 혁신을 거쳤으며 처음으로 3차원 체스 말을 집는 능력을 실현했습니다. 가정용 로봇의 기계 발톱을 통해 체스 게임, 모두 체스 게임, 기보 복습 등과 같은 인간-기계 기능을 수행합니다.

개학이 코앞으로 다가왔습니다. 새 학기를 앞둔 학생들뿐만 아니라 대형 AI 모델도 스스로 관리해야 합니다. 얼마 전 레딧에는 클로드가 게으르다고 불평하는 네티즌들이 붐볐습니다. "레벨이 많이 떨어졌고, 자주 멈췄고, 심지어 출력도 매우 짧아졌습니다. 출시 첫 주에는 4페이지 전체 문서를 한 번에 번역할 수 있었지만 지금은 반 페이지도 출력하지 못합니다. !" https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ "클로드에게 완전히 실망했습니다"라는 제목의 게시물에

베이징에서 열린 세계로봇컨퍼런스에서는 휴머노이드 로봇의 전시가 현장의 절대 화두가 됐다. 스타더스트 인텔리전트 부스에서는 AI 로봇 어시스턴트 S1이 덜시머, 무술, 서예 3대 퍼포먼스를 선보였다. 문학과 무술을 모두 갖춘 하나의 전시 공간은 수많은 전문 관객과 미디어를 끌어 모았습니다. 탄력 있는 현의 우아한 연주를 통해 S1은 정밀한 작동과 속도, 힘, 정밀성을 갖춘 절대적인 제어력을 보여줍니다. CCTV 뉴스는 '서예'의 모방 학습 및 지능형 제어에 대한 특별 보도를 진행했습니다. 회사 설립자 Lai Jie는 부드러운 움직임 뒤에 하드웨어 측면이 최고의 힘 제어와 가장 인간과 유사한 신체 지표(속도, 하중)를 추구한다고 설명했습니다. 등)이지만 AI측에서는 사람의 실제 움직임 데이터를 수집해 로봇이 강한 상황에 직면했을 때 더욱 강해지고 빠르게 진화하는 방법을 학습할 수 있다. 그리고 민첩하다

참가자들은 이번 ACL 컨퍼런스에서 많은 것을 얻었습니다. ACL2024는 6일간 태국 방콕에서 개최됩니다. ACL은 전산언어학 및 자연어 처리 분야 최고의 국제학술대회로 국제전산언어학회(International Association for Computational Linguistics)가 주최하고 매년 개최된다. ACL은 NLP 분야에서 학술 영향력 1위를 항상 차지하고 있으며, CCF-A 추천 컨퍼런스이기도 합니다. 올해로 62회째를 맞이하는 ACL 컨퍼런스에는 NLP 분야의 최신 저서가 400편 이상 접수됐다. 어제 오후 컨퍼런스에서는 최우수 논문과 기타 상을 발표했습니다. 이번에 최우수논문상 7개(미출판 2개), 우수주제상 1개, 우수논문상 35개가 있다. 이 컨퍼런스에서는 또한 3개의 리소스 논문상(ResourceAward)과 사회적 영향상(Social Impact Award)을 수상했습니다.

비전과 로봇 학습의 긴밀한 통합. 최근 화제를 모으고 있는 1X 휴머노이드 로봇 네오(NEO)와 두 개의 로봇 손이 원활하게 협력해 옷 개기, 차 따르기, 신발 싸기 등을 하는 모습을 보면 마치 로봇 시대로 접어들고 있다는 느낌을 받을 수 있다. 실제로 이러한 부드러운 움직임은 첨단 로봇 기술 + 정교한 프레임 디자인 + 다중 모드 대형 모델의 산물입니다. 우리는 유용한 로봇이 종종 환경과 복잡하고 절묘한 상호작용을 요구한다는 것을 알고 있으며, 환경은 공간적, 시간적 영역에서 제약으로 표현될 수 있습니다. 예를 들어, 로봇이 차를 따르도록 하려면 먼저 로봇이 찻주전자 손잡이를 잡고 차를 흘리지 않고 똑바로 세운 다음, 주전자 입구와 컵 입구가 일치할 때까지 부드럽게 움직여야 합니다. 을 누른 다음 주전자를 특정 각도로 기울입니다. 이것

오늘 오후 Hongmeng Zhixing은 공식적으로 새로운 브랜드와 신차를 환영했습니다. 8월 6일, Huawei는 Hongmeng Smart Xingxing S9 및 Huawei 전체 시나리오 신제품 출시 컨퍼런스를 개최하여 파노라마식 스마트 플래그십 세단 Xiangjie S9, 새로운 M7Pro 및 Huawei novaFlip, MatePad Pro 12.2인치, 새로운 MatePad Air, Huawei Bisheng을 선보였습니다. 레이저 프린터 X1 시리즈, FreeBuds6i, WATCHFIT3 및 스마트 스크린 S5Pro를 포함한 다양한 새로운 올-시나리오 스마트 제품, 스마트 여행, 스마트 오피스, 스마트 웨어에 이르기까지 화웨이는 풀 시나리오 스마트 생태계를 지속적으로 구축하여 소비자에게 스마트한 경험을 제공합니다. 만물인터넷. Hongmeng Zhixing: 스마트 자동차 산업의 업그레이드를 촉진하기 위한 심층적인 권한 부여 화웨이는 중국 자동차 산업 파트너와 손을 잡고

컨퍼런스 소개 과학기술의 급속한 발전과 함께 인공지능은 사회 발전을 촉진하는 중요한 힘이 되었습니다. 이 시대에 우리는 분산인공지능(DAI)의 혁신과 적용을 목격하고 참여할 수 있어 행운입니다. 분산 인공지능(Distributed Artificial Intelligence)은 인공지능 분야의 중요한 한 분야로, 최근 몇 년간 점점 더 많은 주목을 받고 있습니다. 대규모 언어 모델(LLM) 기반 에이전트가 갑자기 등장했습니다. 대규모 모델의 강력한 언어 이해와 생성 기능을 결합하여 자연어 상호 작용, 지식 추론, 작업 계획 등에 큰 잠재력을 보여주었습니다. AIAgent는 빅 언어 모델을 이어받아 현재 AI계에서 화제가 되고 있습니다. 오
