백엔드 개발 파이썬 튜토리얼 검색 향상을 위해 CLIP과 YOLO 사용

검색 향상을 위해 CLIP과 YOLO 사용

Aug 05, 2024 pm 09:58 PM

이 기사에서는 YOLO와 같은 객체 감지 모델을 CLIP과 같은 다중 모드 임베딩 모델과 함께 사용하여 이미지 검색을 향상시키는 방법을 살펴보겠습니다.

아이디어는 다음과 같습니다. CLIP 이미지 검색은 다음과 같이 작동합니다. CLIP 모델을 사용하여 보유한 이미지를 삽입하고 벡터 데이터베이스와 같은 어딘가에 저장합니다. 그런 다음 추론 중에 쿼리 이미지나 프롬프트를 사용하여 이를 포함하고 검색할 수 있는 저장된 임베딩에서 가장 가까운 이미지를 찾을 수 있습니다. 문제는 삽입된 이미지에 개체가 너무 많거나 일부 개체가 배경에 있는데도 시스템이 해당 개체를 검색하기를 원하는 경우입니다. CLIP은 이미지 전체를 삽입하기 때문입니다. 단어 임베딩 모델과 문장 임베딩 모델의 관계를 생각해 보세요. 우리는 이미지의 객체에 해당하는 단어를 검색할 수 있기를 원합니다. 따라서 해결책은 객체 감지 모델을 사용하여 이미지를 다른 객체로 분해하는 것입니다. 그런 다음 이러한 분해된 이미지를 포함하되 상위 이미지에 연결합니다. 이를 통해 작물을 검색하고 작물이 시작된 부모를 얻을 수 있습니다. 어떻게 작동하는지 살펴보겠습니다.

종속성을 설치하고 가져옵니다.

!pip install -q ultralytics torch matplotlib numpy pillow zipfile36 transformers

from ultralytics import YOLO
import matplotlib.pyplot as plt
from PIL import pillow
import os
from Zipfile import Zipfile, BadZipFile
import torch
from transformers import CLIPProcessor, CLIPModel, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
로그인 후 복사

COCO 데이터세트를 다운로드하고 압축을 푼다.

!wget http://images.cocodataset.org/zips/val2017.zip -O coco_val2017.zip

def extract_zip_file(extract_path):
    try:
        with ZipFile(extract_path+".zip") as zfile:
            zfile.extractall(extract_path)
        # remove zipfile
        zfileTOremove=f"{extract_path}"+".zip"
        if os.path.isfile(zfileTOremove):
            os.remove(zfileTOremove)
        else:
            print("Error: %s file not found" % zfileTOremove)
    except BadZipFile as e:
        print("Error:", e)

extract_val_path = "./coco_val2017"
extract_zip_file(extract_val_path)
로그인 후 복사

그런 다음 이미지 중 일부를 가져와 예시 목록을 만들 수 있습니다.

source = ['coco_val2017/val2017/000000000139.jpg', '/content/coco_val2017/val2017/000000000632.jpg', '/content/coco_val2017/val2017/000000000776.jpg', '/content/coco_val2017/val2017/000000001503.jpg', '/content/coco_val2017/val2017/000000001353.jpg', '/content/coco_val2017/val2017/000000003661.jpg']
로그인 후 복사

YOLO 모델과 CLIP 모델 시작

이 예에서는 OpenAI Clip-vit-base-patch32와 함께 최신 Ultralytics Yolo10x 모델을 사용하겠습니다.

device = "cuda"

 # YOLO Model
model = YOLO('yolov10x.pt')

# Clip model
model_id = "openai/clip-vit-base-patch32"
image_model = CLIPVisionModelWithProjection.from_pretrained(model_id, device_map = device)
text_model = CLIPTextModelWithProjection.from_pretrained(model_id, device_map = device)
processor = CLIPProcessor.from_pretrained(model_id)
로그인 후 복사

감지 모델 실행

results = model(source=source, device = "cuda")
로그인 후 복사

이 코드 조각으로 결과를 보여드리겠습니다

# Visualize the results
fig, ax = plt.subplots(2, 3, figsize=(15, 10))

for i, r in enumerate(results):
    # Plot results image
    im_bgr = r.plot()  # BGR-order numpy array
    im_rgb = Image.fromarray(im_bgr[..., ::-1])  # RGB-order PIL image

    ax[i%2, i//2].imshow(im_rgb)
    ax[i%2, i//2].set_title(f"Image {i+1}")

로그인 후 복사

Using YOLO with CLIP to improve Retrieval

그래서 우리는 YOLO 모델이 이미지 속 물체를 감지하는 데 꽤 잘 작동한다는 것을 알 수 있습니다. 모니터를 TV로 태그한 경우 몇 가지 실수가 있습니다. 하지만 괜찮습니다. YOLO가 할당하는 실제 클래스는 CLIP을 사용하여 추론을 수행하므로 그다지 중요하지 않습니다.

일부 도우미 클래스 정의

class CroppedImage:

  def __init__(self, parent, box, cls):

    self.parent = parent
    self.box = box
    self.cls = cls

  def display(self, ax = None):
    im_rgb = Image.open(self.parent)
    cropped_image = im_rgb.crop(self.box)

    if ax is not None:
      ax.imshow(cropped_image)
      ax.set_title(self.cls)
    else:
      plt.figure(figsize=(10, 10))
      plt.imshow(cropped_image)
      plt.title(self.cls)
      plt.show()

  def get_cropped_image(self):
    im_rgb = Image.open(self.parent)
    cropped_image = im_rgb.crop(self.box)
    return cropped_image

  def __str__(self):
    return f"CroppedImage(parent={self.parent}, boxes={self.box}, cls={self.cls})"

  def __repr__(self):
    return self.__str__()

class YOLOImage:
  def __init__(self, image_path, cropped_images):
    self.image_path = str(image_path)
    self.cropped_images = cropped_images

  def get_image(self):
    return Image.open(self.image_path)

  def get_caption(self):
    cls  =[]
    for cropped_image in self.cropped_images:
      cls.append(cropped_image.cls)

    unique_cls = set(cls)
    count_cls = {cls: cls.count(cls) for cls in unique_cls}

    count_string = " ".join(f"{count} {cls}," for cls, count in count_cls.items())
    return "this image contains " + count_string

  def __str__(self):
    return self.__repr__()

  def __repr__(self):
    cls  =[]
    for cropped_image in self.cropped_images:
      cls.append(cropped_image.cls)

    return f"YOLOImage(image={self.image_path}, cropped_images={cls})"

class ImageEmbedding:
  def __init__(self, image_path, embedding, cropped_image = None):
    self.image_path = image_path
    self.cropped_image = cropped_image
    self.embedding = embedding

로그인 후 복사

CroppedImage 클래스

CroppedImage 클래스는 더 큰 상위 이미지에서 자른 이미지의 일부를 나타냅니다. 이는 상위 이미지의 경로, 자르기 영역을 정의하는 경계 상자 및 클래스 라벨(예: "cat" 또는 "dog")로 초기화됩니다. 이 클래스에는 자른 이미지를 표시하고 이를 이미지 객체로 검색하는 메서드가 포함되어 있습니다. 표시 방법을 사용하면 제공된 축에서 또는 새 그림을 생성하여 잘린 부분을 시각화할 수 있으므로 다양한 사용 사례에 맞게 다용도로 사용할 수 있습니다. 또한 객체에 대한 쉽고 유익한 문자열 표현을 위해 __str__ 및 __repr__ 메소드가 구현되었습니다.

YOLO이미지 클래스

YOLOImage 클래스는 YOLO 객체 감지 모델로 처리된 이미지를 처리하도록 설계되었습니다. 원본 이미지의 경로와 이미지 내에서 감지된 개체를 나타내는 CroppedImage 인스턴스 목록을 사용합니다. 클래스는 전체 이미지를 열어 표시하고 이미지에서 감지된 개체를 요약하는 캡션을 생성하는 메서드를 제공합니다. 캡션 방법은 잘린 이미지에서 고유한 클래스 레이블을 집계하고 계산하여 이미지 콘텐츠에 대한 간결한 설명을 제공합니다. 이 클래스는 객체 감지 작업의 결과를 관리하고 해석하는 데 특히 유용합니다.

ImageEmbedding 클래스

ImageEmbedding 클래스에는 이미지와 이미지의 특징을 숫자로 표현한 관련 임베딩이 있습니다. 이 클래스는 이미지 경로, 임베딩 벡터 및 임베딩이 이미지의 특정 잘린 부분에 해당하는 경우 선택적으로 CroppedImage 인스턴스를 사용하여 초기화될 수 있습니다. ImageEmbedding 클래스는 계산된 특징과 함께 이미지 데이터를 저장하고 액세스하는 구조화된 방법을 제공하므로 이미지 유사성, 분류 및 검색과 관련된 작업에 필수적입니다. 이러한 통합은 효율적인 이미지 처리 및 기계 학습 워크플로를 촉진합니다.

각 이미지를 자르고 YOLOImage 개체 목록을 만듭니다.

yolo_images: list[YOLOImage]= []

names= model.names

for i, r in enumerate(results):
  crops:list[CroppedImage] = []
  boxes = r.boxes
  classes = r.boxes.cls
  for j, box in enumerate(r.boxes):
    box = tuple(box.xyxy.flatten().cpu().numpy())
    cropped_image = CroppedImage(parent = r.path, box = box, cls = names[classes[j].int().item()])
    crops.append(cropped_image)
  yolo_images.append(YOLOImage(image_path=r.path, cropped_images=crops))
로그인 후 복사

CLIP을 사용하여 이미지 삽입

image_embeddings = []

for image in yolo_images:
  input = processor.image_processor(images= image.get_image(), return_tensors = 'pt')
  input.to(device)
  embeddings = image_model(pixel_values = input.pixel_values).image_embeds
  embeddings = embeddings/embeddings.norm(p=2, dim = -1, keepdim = True) # Normalize the embeddings
  image_embedding = ImageEmbedding(image_path = image.image_path, embedding = embeddings)
  image_embeddings.append(image_embedding)

  for cropped_image in image.cropped_images:
    input = processor.image_processor(images= cropped_image.get_cropped_image(), return_tensors = 'pt')
    input.to(device)
    embeddings = image_model(pixel_values = input.pixel_values).image_embeds
    embeddings = embeddings/embeddings.norm(p=2, dim = -1, keepdim = True) # Normalize the embeddings

    image_embedding = ImageEmbedding(image_path = image.image_path, embedding = embeddings, cropped_image = cropped_image)
    image_embeddings.append(image_embedding)

   **image_embeddings_tensor = torch.stack([image_embedding.embedding for image_embedding in image_embeddings]).squeeze()**
로그인 후 복사

이제 원할 경우 이러한 이미지 임베딩을 가져와 벡터 데이터베이스에 저장할 수 있습니다. 하지만 이 예에서는 내부 내적 기법을 사용하여 유사성을 확인하고 이미지를 검색합니다.

검색

query = "image of a flowerpot"

text_embedding = processor.tokenizer(query, return_tensors="pt").to(device)
text_embedding = text_model(**text_embedding).text_embeds

similarities = (torch.matmul(text_embedding, image_embeddings_tensor.T)).flatten().detach().cpu().numpy()

# get the top 5 similar images
k = 5
top_k_indices = similarities.argsort()[-k:]

# Display the top 5 results
fig, ax = plt.subplots(2, 5, figsize=(20, 5))
for i, index in enumerate(top_k_indices):
  if image_embeddings[index].cropped_image is not None:
    image_embeddings[index].cropped_image.display(ax = ax[0][i])
  else:
  ax[0][i].imshow(Image.open(image_embeddings[index].image_path))
  ax[1][i].imshow(Image.open(image_embeddings[index].image_path))
  ax[0][i].axis('off')
  ax[1][i].axis('off')
  ax[1][i].set_title("Original Image")
plt.show()
로그인 후 복사

Using YOLO with CLIP to improve Retrieval

Using YOLO with CLIP to improve Retrieval
Using YOLO with CLIP to improve Retrieval
Using YOLO with CLIP to improve Retrieval

배경에 숨겨져 있는 작은 식물도 검색할 수 있다는 것을 알 수 있습니다. 또한 원본 이미지를 삽입하기 때문에 결과적으로 원본 이미지를 가져오는 경우도 있습니다.

이것은 매우 강력한 기술이 될 수 있습니다. 또한 자신의 이미지에 대한 감지 및 삽입 모델을 모두 미세 조정하고 성능을 더욱 향상시킬 수 있습니다.

한 가지 단점은 감지된 모든 개체에 대해 CLIP 모델을 실행해야 한다는 것입니다. 이를 완화하는 한 가지 방법은 YOLO가 생산하는 상자 수를 제한하는 것입니다.

이 링크에서 Colab의 코드를 확인할 수 있습니다.

Using YOLO with CLIP to improve Retrieval


연결하시겠습니까?

?내 웹사이트

?내 트위터

?내 LinkedIn

위 내용은 검색 향상을 위해 CLIP과 YOLO 사용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles