백엔드 개발 파이썬 튜토리얼 Lyzr.ai로 텍스트 변환: 단계별 가이드

Lyzr.ai로 텍스트 변환: 단계별 가이드

Aug 07, 2024 am 08:04 AM

Transform Your Text with Lyzr.ai: A Step-by-Step Guide

글쓰기는 우리 일상에 꼭 필요한 부분입니다. 이메일 초안 작성, 문서 작성, 스토리텔링 등 무엇이든 우리는 명확성과 정확성을 목표로 합니다. 하지만 맞춤법 검사기로 오류를 수정하는 것은 어려울 수 있습니다.

텍스트를 다듬기 위해 설계된 환상적인 도구인 AI 교정을 시작하세요. 오늘은 AI를 사용하여 작문 능력을 향상하고 문법, 철자법, 구두점 및 서식을 수정하는 간단한 코드를 살펴보겠습니다.

문제 설명

문법적으로 올바른 텍스트를 작성하는 것은 중요하지만 어려운 경우가 많습니다. 수동 교정에는 시간이 많이 걸리고 오류를 놓칠 수 있습니다. 이 코드는 Lyzr.ai를 사용해 텍스트를 확인하고 편집하여 글쓰기 효율성을 높여줍니다.

전제조건

시작하기 전에 Python 프로그래밍을 이해하고 API 키를 사용하여 OpenAI API에 액세스할 수 있어야 합니다. Python 라이브러리와 Lyzr.ai의 프레임워크 설치 및 가져오기에 대한 지식도 도움이 됩니다.

Lyzr Automata 프레임워크 설치

pip install lyzr-automata

# For Google Colab or notebook
!pip install lyzr-automata
로그인 후 복사

코드 및 설명

코드를 단계별로 분석해 보겠습니다.

from lyzr_automata.ai_models.openai import OpenAIModel
from lyzr_automata import Agent, Task
from lyzr_automata.tasks.task_literals import InputType, OutputType
from lyzr_automata.pipelines.linear_sync_pipeline import LinearSyncPipeline
from lyzr_automata import Logger

API_KEY = input('Enter OpenAI API Key')
text = input('Enter the Text Here: ')
로그인 후 복사

Lyzr.ai 라이브러리에서 필요한 도구를 가져오는 것으로 시작하고 사용자에게 교정할 OpenAI API 키와 텍스트를 입력하라는 메시지를 표시합니다.

open_ai_model_text = OpenAIModel(
    api_key=API_KEY,
    parameters={
        "model": "gpt-4-turbo-preview",
        "temperature": 0.5,
        "max_tokens": 1500,
    },
)
로그인 후 복사

API 키와 매개변수를 사용하여 AI 모델을 설정하고 AI의 행동과 응답 길이를 제어합니다.

def ai_proofreader(text):
    ProofReader = Agent(
        prompt_persona="""You are an expert proofreader who can find grammatical errors, and you excel at checking for grammar, spelling, punctuation, and formatting errors.""",
        role="AI Proofreader",
    )

    rephrase_text = Task(
        name="Rephrasing Text",
        agent=ProofReader,
        output_type=OutputType.TEXT,
        input_type=InputType.TEXT,
        model=open_ai_model_text,
        instructions=f"Check the entire text: '{text}' and rephrase it according to grammar, spelling, punctuation, and formatting errors. [Important] Avoid introduction and conclusion in the response.",
        log_output=True,
        enhance_prompt=False,
        default_input=text
    )

    remarks = Task(
        name="Remarks",
        agent=ProofReader,
        output_type=OutputType.TEXT,
        input_type=InputType.TEXT,
        model=open_ai_model_text,
        instructions=f"Check the entire text: '{text}' and provide remarks in bullet points according to grammar, spelling, punctuation, and formatting errors. [Important] Avoid introduction and conclusion in the response.",
        log_output=True,
        enhance_prompt=False,
        default_input=text
    )

    logger = Logger()

    main_output = LinearSyncPipeline(
        logger=logger,
        name="AI ProofReader",
        completion_message="App Generated all things!",
        tasks=[
            rephrase_text,
            remarks,
        ],
    ).run()

    return main_output
로그인 후 복사

ai_proofreader라는 함수를 정의합니다. 내부에서는 전문 교정자 역할을 하는 ProofReader라는 에이전트를 만듭니다. 두 가지 작업이 생성됩니다. 하나는 텍스트를 바꾸는 작업이고 다른 하나는 설명을 제공하는 작업입니다. 두 작업 모두 ProofReader 에이전트와 AI 모델을 사용합니다.

로거가 프로세스를 모니터링합니다. 그런 다음 작업을 순차적으로 실행하여 수정된 텍스트와 설명을 생성하는 파이프라인을 설정합니다.

generated_output = ai_proofreader(text=text)
rephrased_text = generated_output[0]['task_output']
remarks = generated_output[1]['task_output']
로그인 후 복사

사용자의 텍스트로 함수를 호출하고 다시 표현된 텍스트와 설명을 출력으로 가져옵니다.

샘플 입력

text = """ I Rajesh have 2+ years of experience in python developer, 
I know to create backend applications, 
I am seeking a new role for new learnings """
로그인 후 복사

출력

""" 
My name is Rajesh, and I possess over two years of experience as a Python developer. 
I am skilled in creating backend applications and am currently seeking a new role to further my learning 

- The phrase "I Rajesh have 2+ years of experience in python developer" should be corrected to "I, Rajesh, have over two years of experience as a Python developer." This correction addresses a punctuation issue (adding commas around "Rajesh"), a numerical expression ("2+" to "over two"), and clarifies the role ("in python developer" to "as a Python developer").
- "python" should be capitalized to "Python" to properly denote the programming language.
- The phrase "I know to create backend applications" could be more fluidly expressed as "I know how to create backend applications" or "I am skilled in creating backend applications" for clarity and grammatical correctness.
- The phrase "I am seeking a new role for new learnings" could be improved for clarity and professionalism. A better alternative might be "I am seeking a new role to further my learning" or "I am seeking a new role to continue my professional development."
- The entire passage could benefit from better punctuation and formatting for clarity and flow. For instance, using semicolons or periods to separate independent clauses can improve readability: "My name is Rajesh, and I possess over two years of experience as a Python developer; I am skilled in creating backend applications and am currently seeking a new role to further my learning."
- Consistency in tense and style would improve the professional tone of the passage.
"""
로그인 후 복사

Lyzr.ai 소개

Lyzr.ai는 GenAI 애플리케이션을 빠르게 생성하기 위한 로우 코드 에이전트 개발 키트를 제공합니다. 이 간단한 에이전트 프레임워크를 사용하면 교정 및 글쓰기를 비롯한 다양한 용도에 사용할 수 있는 안전하고 안정적인 생성 AI 애플리케이션을 구축할 수 있습니다.

참고자료

자세한 내용은 Lyzr 웹사이트를 방문하거나, 데모를 예약하거나, Discord 및 Slack의 커뮤니티 채널에 가입하세요.

  • Lyzr 홈페이지
  • 데모 예약
  • Lyzr 커뮤니티 채널: Discord, Slack

AI 교정기: GitHub

위 내용은 Lyzr.ai로 텍스트 변환: 단계별 가이드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles