기술 주변기기 일체 포함 Li Feifei의 '공간 지능' 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.

Li Feifei의 '공간 지능' 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.

Aug 07, 2024 pm 05:06 PM
산업

Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.
AIxiv 칼럼은 본 사이트에 학술적, 기술적 내용을 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

이 기사의 첫 번째 저자는 이전에 스탠포드 대학교 대학원생인 Cai Wenxiao입니다. 1학년 점수. 그의 연구 관심 분야에는 다중 모드 대형 모델과 구체화된 지능이 포함됩니다. 이 작업은 그가 Shanghai Jiao Tong University를 방문하고 베이징 Zhiyuan 인공 지능 연구소에서 인턴십을 하는 동안 완료되었습니다. 그의 지도교수는 이 기사의 교신 저자인 Zhao Bo 교수였습니다.

이전에 Li Feifei 선생님이 공간 지능 개념을 제안했습니다. 이에 대응하여 Shanghai Jiao Tong University, Stanford University, Zhiyuan University, Peking University, Oxford University 및 Dongda University의 연구원들은 대규모 공간 모델 SpatialBot을 제안했습니다. 또한 다중 모달 대형 모델이 일반 시나리오와 구현된 시나리오에서 깊이와 공간을 이해할 수 있도록 훈련 데이터 SpatialQA와 테스트 목록 SpatialBench를 제안했습니다.

Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.

  • 논문 제목: SpatialBot: Vision Language Models를 통한 정확한 깊이 이해
  • 논문 링크: https://arxiv.org/abs/2406.13642
  • 프로젝트 홈페이지: https://github. com/BAAI-DCAI/SpatialBot

구체지능의 픽 앤 플레이스 작업에서는 기계 발톱이 대상 물체에 닿았는지 판단하는 것이 필요합니다. 마주치면 발톱을 닫고 잡을 수 있습니다. 그러나 이 Berkerly UR5 데모 데이터 세트 장면에서는 GPT-4o나 인간조차도 단일 RGB 이미지에서 기계적 발톱이 대상 물체에 닿았는지 여부를 판단할 수 없습니다. 예를 들어 깊이 정보를 사용하면 깊이 맵을 직접 확인할 수 있습니다. GPT-4o에 표시되면 깊이 맵을 이해할 수 없기 때문에 판단할 수 없습니다.

SpatialBot은 RGB-Depth에 대한 이해를 통해 기계 집게발과 대상 물체의 깊이 값을 정확하게 획득하여 공간 개념에 대한 이해를 생성할 수 있습니다.

Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.

구현된 장면의 SpatialBot 데모:

1 인간(카메라) 관점에서 오른쪽의 찻잔을 잡습니다. Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.2. 가운데 찻잔을 잡습니다. Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다. 구체화된 지능을 향한 필수 경로로서 대형 모델이 공간을 이해하도록 만드는 방법은 무엇입니까?
포인트 클라우드는 상대적으로 비싸며 쌍안경 카메라는 사용 중에 자주 보정이 필요합니다. 대조적으로, 깊이 카메라는 저렴하고 널리 사용됩니다. 일반적인 시나리오에서는 이러한 하드웨어 장비가 없어도 대규모 비지도 학습 깊이 추정 모델이 이미 상대적으로 정확한 깊이 정보를 제공할 수 있습니다. 따라서 저자는 공간적으로 큰 모델에 대한 입력으로 RGBD를 사용할 것을 제안합니다.

현재 기술 경로의 문제점은 무엇입니까?

기존 모델은 깊이 맵 입력을 직접 이해할 수 없습니다. 예를 들어, 이미지 인코더 CLIP/SigLIP은 깊이 맵을 보지 않고 RGB 이미지에 대해 학습됩니다.
  1. 기존의 대규모 모델 데이터 세트 대부분은 RGB만으로 분석 및 답변이 가능합니다. 따라서 기존 데이터를 단순히 RGBD 입력으로 변경하면 모델은 지식을 깊이 맵에 적극적으로 색인화하지 않습니다. 모델이 깊이 맵을 이해하고 깊이 정보를 사용할 수 있도록 안내하려면 특별히 설계된 작업과 QA가 필요합니다.
  2. S SpatialQA의 3단계, 깊이 맵, 깊이 정보의 활용을 이해하도록 모델을 점진적으로 안내합니다
    모델이 깊이 정보를 이해하고 사용하며 공간을 이해하도록 안내하는 방법은 무엇입니까?
    저자는 세 가지 수준의 SpatialQA 데이터 세트를 제안합니다.

    낮은 수준에서는 모델이 깊이 맵을 이해하도록 안내하고 깊이 맵에서 직접 정보를 안내합니다.
    1. 중간 수준에서는 모델이 깊이를 RGB와 정렬하도록 합니다.
    2. 상위 수준에서 다중 깊이 설계 관련 작업의 경우 50k 데이터에 주석이 추가되어 모델이 깊이 정보를 사용하여 깊이 맵 이해를 기반으로 작업을 완료할 수 있습니다. 작업에는 공간 위치 관계, 물체 크기, 물체 접촉 여부, 로봇 장면 이해 등이 포함됩니다.
    3. What does Spatialbot에 포함된 대화 예시?

    Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.

    1. SpatialBot은 에이전트의 아이디어를 바탕으로 필요할 때 API를 통해 정확한 깊이 정보를 얻을 수 있습니다. 깊이 정보 획득, 거리 비교 등의 작업에서 99% 이상의 정확도를 달성할 수 있습니다. 2. 공간 이해 작업을 위해 저자는 SpatialBench 목록을 발표했습니다. 신중하게 설계되고 주석이 달린 QA를 통해 모델의 깊은 이해 능력을 테스트합니다. SpatialBot은 목록에서 GPT-4o에 가까운 기능을 보여줍니다.

    모델은 깊이 맵을 어떻게 이해하나요?

    1. 모델의 깊이 맵 입력: 실내 및 실외 작업을 고려하려면 통일된 깊이 맵 인코딩 방법이 필요합니다. 실내 잡기 및 탐색 작업에는 밀리미터 수준의 정확도가 필요할 수 있습니다. 실외 장면에서는 그다지 정확할 필요는 없지만 100미터 이상의 깊이 값 범위가 필요할 수 있습니다. 서수 인코딩은 기존 비전 작업의 인코딩에 사용되지만 서수의 값을 더하거나 뺄 수 없습니다. 모든 깊이 정보를 최대한 보존하기 위해 SpatialBot은 uint24 또는 3채널 uint8을 사용하여 1mm에서 131m 범위의 미터법 깊이(밀리미터)를 직접 사용하여 이러한 값을 보존합니다.
    2. SpatialBot은 깊이 정보를 정확하게 얻기 위해 필요하다고 판단될 때 DepthAPI를 포인트 형태로 호출하여 정확한 깊이 값을 얻습니다. 객체의 깊이를 얻으려면 SpatialBot은 먼저 객체의 경계 상자를 생각한 다음 경계 상자의 중심점을 사용하여 API를 호출합니다.
    3. SpatialBot은 물체의 중심점, 깊이 평균, 최대 및 최소 4가지 값을 사용하여 깊이를 설명합니다.

                                                                 SpatialBot 및 DepthAPI 아키텍처

    SpatialBot은 일반 시나리오와 특정 시나리오에서 얼마나 효과적인가요?

    Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.

    1. SpatialBot은 3B에서 8B까지의 다중 기본 LLM을 기반으로 합니다. SpatialQA에서 공간 지식을 학습함으로써 SpatialBot은 일반적으로 사용되는 MLLM 데이터 세트(MME, MMBench 등)에서도 상당한 성능 향상을 보여줍니다. 2. SpatialBot은 Open X-Embodiment와 저자가 수집한 로봇 크롤링 데이터 등 특정 작업에서도 놀라운 결과를 보여주었습니다.

    B Spatialbot 일반 시나리오의 데이터 표시 방법

    데이터 표시 방법은 무엇입니까?
    깊이, 거리 관계, 상하, 좌우 전후 위치 관계, 크기 관계 등 공간적 이해에 관한 질문을 세심하게 설계했으며, 두 물체가 안에 있는지 등 구현에 있어서 중요한 문제를 포함합니다. 연락하다.
    테스트 세트 SpatialBench에서는 질문, 옵션 및 답변이 먼저 수동으로 고려됩니다. 테스트 세트 크기를 확장하기 위해 동일한 프로세스로 주석을 달기 위해 GPT도 사용됩니다.
    훈련 세트 SpatialQA에는 세 가지 측면이 포함됩니다.

    깊이 맵을 직접 이해하고, 모델이 깊이 맵을 보고, 깊이 분포를 분석하고, 포함될 수 있는 객체를 추측하도록 합니다.
    1. 공간 관계 이해 및 추론
    2. 로봇 장면 이해: Open X-Embodiment의 장면, 포함된 개체 및 가능한 작업과 이 기사에서 수집된 로봇 데이터를 설명하고 개체 및 경계 상자에 수동으로 레이블을 지정합니다. 로봇의.

    Li Feifei의 공간 지능 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.

                                                                          열기 GPT를 사용하여 데이터의 이 부분에 주석을 달 때 GPT는 먼저 깊이 맵을 보고, 깊이 맵을 설명하고, 포함될 수 있는 장면과 개체에 대한 이유를 설명한 다음 RGB 맵을 확인하여 올바른 설명과 추론을 필터링합니다.

위 내용은 Li Feifei의 '공간 지능' 이후 Shanghai Jiao Tong University, Zhiyuan University, Peking University 등은 대규모 공간 모델 SpatialBot을 제안했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. 딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. Aug 09, 2024 pm 04:01 PM

하지만 공원에 있는 노인을 이길 수는 없을까요? 파리올림픽이 본격화되면서 탁구가 많은 주목을 받고 있다. 동시에 로봇은 탁구 경기에서도 새로운 돌파구를 마련했습니다. 방금 DeepMind는 탁구 경기에서 인간 아마추어 선수 수준에 도달할 수 있는 최초의 학습 로봇 에이전트를 제안했습니다. 논문 주소: https://arxiv.org/pdf/2408.03906 DeepMind 로봇은 탁구를 얼마나 잘 치나요? 아마도 인간 아마추어 선수들과 동등할 것입니다: 포핸드와 백핸드 모두: 상대는 다양한 플레이 스타일을 사용하고 로봇도 견딜 수 있습니다: 다양한 스핀으로 서브를 받습니다. 그러나 게임의 강도는 그만큼 강렬하지 않은 것 같습니다. 공원에 있는 노인. 로봇용, 탁구용

최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. 최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. Aug 21, 2024 pm 07:33 PM

8월 21일, 2024년 세계로봇대회가 베이징에서 성대하게 개최되었습니다. SenseTime의 홈 로봇 브랜드 "Yuanluobot SenseRobot"은 전체 제품군을 공개했으며, 최근에는 Yuanluobot AI 체스 두는 로봇인 체스 프로페셔널 에디션(이하 "Yuanluobot SenseRobot")을 출시하여 세계 최초의 A 체스 로봇이 되었습니다. 집. Yuanluobo의 세 번째 체스 게임 로봇 제품인 새로운 Guoxiang 로봇은 AI 및 엔지니어링 기계 분야에서 수많은 특별한 기술 업그레이드와 혁신을 거쳤으며 처음으로 3차원 체스 말을 집는 능력을 실현했습니다. 가정용 로봇의 기계 발톱을 통해 체스 게임, 모두 체스 게임, 기보 복습 등과 같은 인간-기계 기능을 수행합니다.

클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 Sep 02, 2024 pm 01:56 PM

개학이 코앞으로 다가왔습니다. 새 학기를 앞둔 학생들뿐만 아니라 대형 AI 모델도 스스로 관리해야 합니다. 얼마 전 레딧에는 클로드가 게으르다고 불평하는 네티즌들이 붐볐습니다. "레벨이 많이 떨어졌고, 자주 멈췄고, 심지어 출력도 매우 짧아졌습니다. 출시 첫 주에는 4페이지 전체 문서를 한 번에 번역할 수 있었지만 지금은 반 페이지도 출력하지 못합니다. !" https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ "클로드에게 완전히 실망했습니다"라는 제목의 게시물에

세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. 세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. Aug 22, 2024 pm 10:35 PM

베이징에서 열린 세계로봇컨퍼런스에서는 휴머노이드 로봇의 전시가 현장의 절대 화두가 됐다. 스타더스트 인텔리전트 부스에서는 AI 로봇 어시스턴트 S1이 덜시머, 무술, 서예 3대 퍼포먼스를 선보였다. 문학과 무술을 모두 갖춘 하나의 전시 공간은 수많은 전문 관객과 미디어를 끌어 모았습니다. 탄력 있는 현의 우아한 연주를 통해 S1은 정밀한 작동과 속도, 힘, 정밀성을 갖춘 절대적인 제어력을 보여줍니다. CCTV 뉴스는 '서예'의 모방 학습 및 지능형 제어에 대한 특별 보도를 진행했습니다. 회사 설립자 Lai Jie는 부드러운 움직임 뒤에 하드웨어 측면이 최고의 힘 제어와 가장 인간과 유사한 신체 지표(속도, 하중)를 추구한다고 설명했습니다. 등)이지만 AI측에서는 사람의 실제 움직임 데이터를 수집해 로봇이 강한 상황에 직면했을 때 더욱 강해지고 빠르게 진화하는 방법을 학습할 수 있다. 그리고 민첩하다

ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

참가자들은 이번 ACL 컨퍼런스에서 많은 것을 얻었습니다. ACL2024는 6일간 태국 방콕에서 개최됩니다. ACL은 전산언어학 및 자연어 처리 분야 최고의 국제학술대회로 국제전산언어학회(International Association for Computational Linguistics)가 주최하고 매년 개최된다. ACL은 NLP 분야에서 학술 영향력 1위를 항상 차지하고 있으며, CCF-A 추천 컨퍼런스이기도 합니다. 올해로 62회째를 맞이하는 ACL 컨퍼런스에는 NLP 분야의 최신 저서가 400편 이상 접수됐다. 어제 오후 컨퍼런스에서는 최우수 논문과 기타 상을 발표했습니다. 이번에 최우수논문상 7개(미출판 2개), 우수주제상 1개, 우수논문상 35개가 있다. 이 컨퍼런스에서는 또한 3개의 리소스 논문상(ResourceAward)과 사회적 영향상(Social Impact Award)을 수상했습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Sep 03, 2024 pm 05:18 PM

비전과 로봇 학습의 긴밀한 통합. 최근 화제를 모으고 있는 1X 휴머노이드 로봇 네오(NEO)와 두 개의 로봇 손이 원활하게 협력해 옷 개기, 차 따르기, 신발 싸기 등을 하는 모습을 보면 마치 로봇 시대로 접어들고 있다는 느낌을 받을 수 있다. 실제로 이러한 부드러운 움직임은 첨단 로봇 기술 + 정교한 프레임 디자인 + 다중 모드 대형 모델의 산물입니다. 우리는 유용한 로봇이 종종 환경과 복잡하고 절묘한 상호작용을 요구한다는 것을 알고 있으며, 환경은 공간적, 시간적 영역에서 제약으로 표현될 수 있습니다. 예를 들어, 로봇이 차를 따르도록 하려면 먼저 로봇이 찻주전자 손잡이를 잡고 차를 흘리지 않고 똑바로 세운 다음, 주전자 입구와 컵 입구가 일치할 때까지 부드럽게 움직여야 합니다. 을 누른 다음 주전자를 특정 각도로 기울입니다. 이것

분산 인공지능 컨퍼런스 DAI 2024 Call for Papers: Agent Day, 강화학습의 아버지 Richard Sutton이 참석합니다! Yan Shuicheng, Sergey Levine 및 DeepMind 과학자들이 기조 연설을 할 예정입니다. 분산 인공지능 컨퍼런스 DAI 2024 Call for Papers: Agent Day, 강화학습의 아버지 Richard Sutton이 참석합니다! Yan Shuicheng, Sergey Levine 및 DeepMind 과학자들이 기조 연설을 할 예정입니다. Aug 22, 2024 pm 08:02 PM

컨퍼런스 소개 과학기술의 급속한 발전과 함께 인공지능은 사회 발전을 촉진하는 중요한 힘이 되었습니다. 이 시대에 우리는 분산인공지능(DAI)의 혁신과 적용을 목격하고 참여할 수 있어 행운입니다. 분산 인공지능(Distributed Artificial Intelligence)은 인공지능 분야의 중요한 한 분야로, 최근 몇 년간 점점 더 많은 주목을 받고 있습니다. 대규모 언어 모델(LLM) 기반 에이전트가 갑자기 등장했습니다. 대규모 모델의 강력한 언어 이해와 생성 기능을 결합하여 자연어 상호 작용, 지식 추론, 작업 계획 등에 큰 잠재력을 보여주었습니다. AIAgent는 빅 언어 모델을 이어받아 현재 AI계에서 화제가 되고 있습니다. 오

홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 Aug 08, 2024 am 07:02 AM

오늘 오후 Hongmeng Zhixing은 공식적으로 새로운 브랜드와 신차를 환영했습니다. 8월 6일, Huawei는 Hongmeng Smart Xingxing S9 및 Huawei 전체 시나리오 신제품 출시 컨퍼런스를 개최하여 파노라마식 스마트 플래그십 세단 Xiangjie S9, 새로운 M7Pro 및 Huawei novaFlip, MatePad Pro 12.2인치, 새로운 MatePad Air, Huawei Bisheng을 선보였습니다. 레이저 프린터 X1 시리즈, FreeBuds6i, WATCHFIT3 및 스마트 스크린 S5Pro를 포함한 다양한 새로운 올-시나리오 스마트 제품, 스마트 여행, 스마트 오피스, 스마트 웨어에 이르기까지 화웨이는 풀 시나리오 스마트 생태계를 지속적으로 구축하여 소비자에게 스마트한 경험을 제공합니다. 만물인터넷. Hongmeng Zhixing: 스마트 자동차 산업의 업그레이드를 촉진하기 위한 심층적인 권한 부여 화웨이는 중국 자동차 산업 파트너와 손을 잡고

See all articles