수백만 개의 결정 데이터로 훈련하여 결정학적 위상 문제를 해결하는 딥러닝 방법인 PhAI가 Science에 게재되었습니다.
오늘날까지 단순한 금속부터 큰 막 단백질까지 결정학에 의해 결정되는 구조적 세부 사항과 정밀도는 다른 어떤 방법과도 비교할 수 없습니다. 그러나 가장 큰 과제인 소위 위상 문제는 실험적으로 결정된 진폭에서 위상 정보를 검색하는 것입니다.
덴마크 코펜하겐 대학의 연구원들은 결정 위상 문제를 해결하기 위해 PhAI라는 딥 러닝 방법을 개발했습니다. 수백만 개의 인공 결정 구조와 그에 상응하는 합성 회절 데이터를 사용하여 훈련된 딥 러닝 신경망은 정확한 전자 밀도 지도를 생성할 수 있습니다.
연구에 따르면 이 딥 러닝 기반 ab initio 구조 솔루션 방법은 단 2옹스트롬의 분해능으로 위상 문제를 해결할 수 있는 것으로 나타났습니다. 이는 원자 분해능에서 사용 가능한 데이터의 10~20%에 해당하는 반면 기존 Ab initio는 방법은 일반적으로 원자 분해능이 필요합니다.
관련 연구는 "PhAI: A deep-learning Approach to 해결할 the crystallographic Phase 문제"라는 제목으로 "Science" 8월 1일자에 게재되었습니다.
결정학은 자연과학의 핵심 분석 기술 중 하나입니다. X선 결정학은 결정의 3차원 구조에 대한 독특한 시각을 제공합니다.
전자 밀도 맵을 재구성하려면 회절 반사의 복잡한 구조 인자 $F$를 충분히 알아야 합니다. 기존 실험에서는 진폭 $|F|$만 얻고 위상 $phi$는 손실됩니다. 이것은 결정학적 위상 문제입니다.
1950년대와 1960년대에 Karle과 Hauptmann**이 위상 문제를 해결하기 위한 소위 직접적인 방법을 개발하면서 획기적인 발전이 이루어졌습니다. 그러나 직접 방법에는 원자 분해능 회절 데이터가 필요합니다. 그러나 원자 분해능의 요구 사항은 경험적 관찰입니다.
최근에는 전통적인 직접 방식이 이중 공간 방식으로 보완되었습니다. 현재 사용 가능한 ab initio 방법은 한계에 도달한 것 같습니다. 위상 문제에 대한 일반적인 해결책은 아직 알려지지 않았습니다.
수학적으로 말하면, 구조 인자 진폭과 위상의 모든 조합은 역푸리에 변환의 대상이 될 수 있습니다. 그러나 물리적, 화학적 요구 사항(예: 원자와 유사한 전자 밀도 분포)은 일련의 진폭과 일치하는 가능한 위상 조합에 규칙을 적용합니다. 딥 러닝의 발전으로 인해 현재의 ab initio 방법보다 더 깊이 있게 이러한 관계를 탐색할 수 있게 되었습니다.
여기서 코펜하겐 대학의 연구원들은 결정학의 위상 문제를 해결하는 것을 목표로 수백만 개의 인공 결정 구조와 해당 회절 데이터를 사용하는 데이터 기반 접근 방식을 취했습니다.
연구에 따르면 이 딥러닝 기반 ab initio 구조 해결 방법은 직접 방법에서 필요한 데이터만 사용하여 최소 격자 평면 거리(dmin) = 2.0Å의 분해능 10~20%에서 수행할 수 있는 것으로 나타났습니다. .
Neural Network Design and Training
구성된 인공 신경망은 PhAI라고 하며, 구조 인자 진폭 |F|을 받아 해당 위상 값 ф을 출력합니다. PhAI의 아키텍처는 아래 그림과 같습니다.
즉, 구조는 원자 분해능에서 약 10Å의 단위 셀 크기로 제한됩니다. 또한 가장 일반적인 중심대칭 공간 그룹 P21/c가 선택되었습니다. 중앙 대칭은 가능한 위상 값을 0 또는 π rad로 제한합니다.
- 研究使用主要包含有机分子的人工晶体结构训练神经网络。创建了大约 49,000,000 个结构,其中有机晶体结构占 94.29%,金属有机晶体结构占 5.66%,无机晶体结构占 0.05%。
- 神经网络的输入由振幅和相位组成,它们由卷积输入块处理,添加并输入到一系列卷积块(Conv3D)中,然后是一系列多层感知器(MLP)块。来自线性分类器(相位分类器)的预测相位通过网络循环 Nc 次。训练数据是通过将 GDB-13 数据库中的金属原子和有机分子插入到晶胞中生成的。生成的结构被组织成训练数据,从中可以计算出在采样温度因子、分辨率和完整性时的真实相位和结构因子振幅。
解决真实结构问题 - 经过训练的神经网络在标准计算机上运行,计算需求适中。它接受 hkl 索引列表和相应的结构因子振幅作为输入。不需要其他输入信息,甚至不需要结构的晶胞参数。这与所有其他现代从头算方法有着根本区别。网络可以即时预测并输出相位值。
- 研究人员使用计算得出的真实晶体结构的衍射数据测试了神经网络的性能。共获得 2387 个测试用例。对于所有收集的结构,考虑了多个数据分辨率值,范围从 1.0 到 2.0 Å。为了进行比较,还使用了电荷翻转方法来检索相位信息。
图示:相位和真实电子密度图之间的相关系数 r 的直方图。
(来源:论文)
经过训练的神经网络表现出色;如果相应的衍射数据分辨率良好,它可以解决所有测试结构(N = 2387),并且在从低分辨率数据中解决结构方面表现出色。尽管神经网络几乎没有针对无机结构进行训练,但它可以完美地解决此类结构。
电荷翻转法在处理高分辨率数据时表现优异,但随着数据分辨率的降低,其产生合理正确解的能力逐渐下降;然而,它仍然以 1.6Å 的分辨率解决了大约 32% 的结构。通过进一步试验和更改输入参数(例如翻转阈值),可以改善通过电荷翻转确定的结构数量。
在 PhAI 方法中,这种元优化是在训练期间执行的,不需要由用户执行。这些结果表明,在晶体学中必须有原子分辨率数据才能从头算相位的普遍观念可能被打破。PhAI 仅需要 10% 至 20% 的原子分辨率数据。
这一结果清楚地表明,原子分辨率对于从头算方法来说不是必需的,并为基于深度学习的结构测定开辟了新途径。
这种深度学习方法的挑战是扩展神经网络,也就是说,较大晶胞的衍射数据将需要大量的输入和输出数据以及训练期间的计算成本。未来,需要进一步研究,将该方法扩展到一般情况。
위 내용은 수백만 개의 결정 데이터로 훈련하여 결정학적 위상 문제를 해결하는 딥러닝 방법인 PhAI가 Science에 게재되었습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











현대 제조업에서 정확한 결함 검출은 제품 품질을 보장하는 열쇠일 뿐만 아니라 생산 효율성을 향상시키는 핵심이기도 합니다. 그러나 기존 결함 감지 데이터세트는 실제 적용에 필요한 정확성과 의미론적 풍부함이 부족한 경우가 많아 모델이 특정 결함 카테고리나 위치를 식별할 수 없게 됩니다. 이 문제를 해결하기 위해 광저우 과학기술대학교와 Simou Technology로 구성된 최고 연구팀은 산업 결함에 대한 상세하고 의미론적으로 풍부한 대규모 주석을 제공하는 "DefectSpectrum" 데이터 세트를 혁신적으로 개발했습니다. 표 1에서 볼 수 있듯이, 다른 산업 데이터 세트와 비교하여 "DefectSpectrum" 데이터 세트는 가장 많은 결함 주석(5438개의 결함 샘플)과 가장 상세한 결함 분류(125개의 결함 카테고리)를 제공합니다.

오픈 LLM 커뮤니티는 백개의 꽃이 피어 경쟁하는 시대입니다. Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 등을 보실 수 있습니다. 훌륭한 연기자. 그러나 GPT-4-Turbo로 대표되는 독점 대형 모델과 비교하면 개방형 모델은 여전히 많은 분야에서 상당한 격차를 보이고 있습니다. 일반 모델 외에도 프로그래밍 및 수학을 위한 DeepSeek-Coder-V2, 시각 언어 작업을 위한 InternVL과 같이 핵심 영역을 전문으로 하는 일부 개방형 모델이 개발되었습니다.

AI의 경우 수학 올림피아드는 더 이상 문제가 되지 않습니다. 목요일에 Google DeepMind의 인공 지능은 AI를 사용하여 올해 국제 수학 올림피아드 IMO의 실제 문제를 해결하는 위업을 달성했으며 금메달 획득에 한 걸음 더 다가섰습니다. 지난 주 막 끝난 IMO 대회에는 대수학, 조합론, 기하학, 수론 등 6개 문제가 출제됐다. 구글이 제안한 하이브리드 AI 시스템은 4문제를 맞혀 28점을 얻어 은메달 수준에 이르렀다. 이달 초 UCLA 종신 교수인 테렌스 타오(Terence Tao)가 상금 100만 달러의 AI 수학 올림피아드(AIMO Progress Award)를 추진했는데, 예상외로 7월 이전에 AI 문제 해결 수준이 이 수준으로 향상됐다. IMO에서 동시에 질문을 해보세요. 가장 정확하게 하기 어려운 것이 IMO인데, 역사도 가장 길고, 규모도 가장 크며, 가장 부정적이기도 합니다.

Editor | ScienceAI 제한된 임상 데이터를 기반으로 수백 개의 의료 알고리즘이 승인되었습니다. 과학자들은 누가 도구를 테스트해야 하며 최선의 방법은 무엇인지에 대해 토론하고 있습니다. 데빈 싱(Devin Singh)은 응급실에서 오랜 시간 치료를 기다리던 중 심장마비를 겪는 소아환자를 목격했고, 이를 계기로 대기시간을 단축하기 위해 AI 적용을 모색하게 됐다. SickKids 응급실의 분류 데이터를 사용하여 Singh과 동료들은 잠재적인 진단을 제공하고 테스트를 권장하는 일련의 AI 모델을 구축했습니다. 한 연구에 따르면 이러한 모델은 의사 방문 속도를 22.3% 단축하여 의료 검사가 필요한 환자당 결과 처리 속도를 거의 3시간 단축할 수 있는 것으로 나타났습니다. 그러나 인공지능 알고리즘의 연구 성공은 이를 입증할 뿐이다.

Editor |KX 오늘날까지 단순한 금속부터 큰 막 단백질에 이르기까지 결정학을 통해 결정되는 구조적 세부 사항과 정밀도는 다른 어떤 방법과도 비교할 수 없습니다. 그러나 가장 큰 과제인 소위 위상 문제는 실험적으로 결정된 진폭에서 위상 정보를 검색하는 것입니다. 덴마크 코펜하겐 대학의 연구원들은 결정 위상 문제를 해결하기 위해 PhAI라는 딥러닝 방법을 개발했습니다. 수백만 개의 인공 결정 구조와 그에 상응하는 합성 회절 데이터를 사용하여 훈련된 딥러닝 신경망은 정확한 전자 밀도 맵을 생성할 수 있습니다. 연구는 이 딥러닝 기반의 순순한 구조 솔루션 방법이 단 2옹스트롬의 해상도로 위상 문제를 해결할 수 있음을 보여줍니다. 이는 원자 해상도에서 사용할 수 있는 데이터의 10~20%에 해당하는 반면, 기존의 순순한 계산은

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

2023년에는 AI의 거의 모든 분야가 전례 없는 속도로 진화하고 있다. 동시에 AI는 구체화된 지능, 자율주행 등 핵심 트랙의 기술적 한계를 지속적으로 확장하고 있다. 멀티모달 추세 하에서 AI 대형 모델의 주류 아키텍처인 Transformer의 상황이 흔들릴까요? MoE(Mixed of Experts) 아키텍처를 기반으로 한 대형 모델 탐색이 업계에서 새로운 트렌드가 된 이유는 무엇입니까? 대형 비전 모델(LVM)이 일반 비전 분야에서 새로운 돌파구가 될 수 있습니까? ...지난 6개월 동안 공개된 본 사이트의 2023 PRO 회원 뉴스레터에서 위 분야의 기술 동향과 산업 변화에 대한 심층 분석을 제공하여 새로운 환경에서 귀하의 목표 달성에 도움이 되는 10가지 특별 해석을 선택했습니다. 년. 준비하세요. 이 해석은 2023년 50주차에 나온 것입니다.

편집자 | Ziluo AI의 신약 개발 간소화에 대한 활용이 폭발적으로 증가하고 있습니다. 신약 개발에 필요한 특성을 가질 수 있는 수십억 개의 후보 분자를 스크리닝합니다. 재료 가격부터 오류 위험까지 고려해야 할 변수가 너무 많아 과학자들이 AI를 사용하더라도 최고의 후보 분자를 합성하는 데 드는 비용을 평가하는 것은 쉬운 일이 아닙니다. 여기서 MIT 연구진은 최고의 분자 후보를 자동으로 식별하여 합성 비용을 최소화하는 동시에 후보가 원하는 특성을 가질 가능성을 최대화하기 위해 정량적 의사결정 알고리즘 프레임워크인 SPARROW를 개발했습니다. 알고리즘은 또한 이러한 분자를 합성하는 데 필요한 재료와 실험 단계를 결정했습니다. SPARROW는 여러 후보 분자를 사용할 수 있는 경우가 많기 때문에 한 번에 분자 배치를 합성하는 비용을 고려합니다.
