백엔드 개발 Golang Mistral AI를 사용하여 Go로 생성 AI 애플리케이션 구축

Mistral AI를 사용하여 Go로 생성 AI 애플리케이션 구축

Aug 09, 2024 pm 01:13 PM

Go용 AWS SDK와 함께 Amazon Bedrock에서 Mistral AI를 사용하는 방법 알아보기

Mistral AI는 성능, 비용 등 다양한 특성을 갖춘 모델을 제공합니다.

  • Mistral 7B - Mistral AI가 출시한 최초의 고밀도 모델로 실험, 사용자 정의 및 빠른 반복에 적합합니다.
  • Mixtral 8x7B - 전문가 모델이 드물게 혼합되어 있습니다.
  • Mistral Large - 대규모 추론 기능이 필요하거나 고도로 전문화된 복잡한 작업(합성 텍스트 생성, 코드 생성, RAG 또는 에이전트)에 이상적입니다.

Go를 통해 Amazon Bedrock에서 이러한 Mistral AI 모델을 사용하는 방법을 살펴보고 그 과정에서 프롬프트 토큰에 대해서도 더 잘 이해해 보겠습니다.

Mistral AI 시작하기

Mistral 7B를 사용한 간단한 예부터 시작해 보겠습니다.

이 블로그 게시물의 **시작하기 전에* 섹션을 참조하여 예제 실행을 위한 전제 조건을 완료하세요. 여기에는 Go 설치, Amazon Bedrock 액세스 구성 및 필요한 IAM 권한 제공이 포함됩니다.*

여기에서 전체 코드를 참조할 수 있습니다

예제를 실행하려면:

git clone https://github.com/abhirockzz/mistral-bedrock-go
cd mistral-bedrock-go

go run basic/main.go
로그인 후 복사

귀하의 경우 응답이 약간 다를 수도 있고 다를 수도 있습니다.

request payload:
 {"prompt":"\u003cs\u003e[INST] Hello, what's your name? [/INST]"}
response payload:
 {"outputs":[{"text":" Hello! I don't have a name. I'm just an artificial intelligence designed to help answer questions and provide information. How can I assist you today?","stop_reason":"stop"}]}
response string:
  Hello! I don't have a name. I'm just an artificial intelligence designed to help answer questions and provide information. How can I assist you today?
로그인 후 복사

여기에서 전체 코드를 참조할 수 있습니다.

JSON 페이로드를 생성하는 것부터 시작합니다. 이는 구조체(MistralRequest)로 모델링됩니다. 또한 모델 ID mistral.mistral-7b-instruct-v0:2
를 확인하세요.

const modelID7BInstruct = "mistral.mistral-7b-instruct-v0:2"
const promptFormat = "<s>[INST] %s [/INST]"

func main() {
    msg := "Hello, what's your name?"

    payload := MistralRequest{
        Prompt: fmt.Sprintf(promptFormat, msg),
    }
//...
로그인 후 복사

Mistral에는 다음과 같은 특정 프롬프트 형식이 있습니다.

  • 문자열의 시작 토큰
  • 을 나타냅니다.
  • 사용자 역할에 대한 텍스트는 [INST]...[/INST] 토큰 안에 있습니다
  • 외부 문자는 보조역할

위 출력 로그에서 토큰이 해석됩니다

다음은 필수 속성이 있는 MistralRequest 구조체입니다.

type MistralRequest struct {
    Prompt        string   `json:"prompt"`
    MaxTokens     int      `json:"max_tokens,omitempty"`
    Temperature   float64  `json:"temperature,omitempty"`
    TopP          float64  `json:"top_p,omitempty"`
    TopK          int      `json:"top_k,omitempty"`
    StopSequences []string `json:"stop,omitempty"`
}
로그인 후 복사

InvokeModel은 모델을 호출하는 데 사용됩니다. JSON 응답은 구조체(MistralResponse)로 변환되고 여기에서 텍스트 응답이 추출됩니다.

    output, err := brc.InvokeModel(context.Background(), &bedrockruntime.InvokeModelInput{
        Body:        payloadBytes,
        ModelId:     aws.String(modelID7BInstruct),
        ContentType: aws.String("application/json"),
    })

    var resp MistralResponse

    err = json.Unmarshal(output.Body, &resp)

    fmt.Println("response string:\n", resp.Outputs[0].Text)
로그인 후 복사

채팅 예시

간단한 대화형 상호작용으로 넘어갑니다. 이것이 Mistral이 말하는 다회전 프롬프트이며 문자열의 끝 토큰입니다.

예제를 실행하려면:

go run chat/main.go
로그인 후 복사

내 상호작용은 다음과 같습니다.

Use Mistral AI to build generative AI applications with Go

여기에서 전체 코드를 참조할 수 있습니다

이 예에서는 코드 자체가 지나치게 단순화되었습니다. 그러나 중요한 부분은 토큰을 사용하여 프롬프트 형식을 지정하는 방법입니다. 이 예에서는 Mixtral 8X7B(mistral.mixtral-8x7b-instruct-v0:1)를 사용하고 있습니다.

const userMessageFormat = "[INST] %s [/INST]"
const modelID8X7BInstruct = "mistral.mixtral-8x7b-instruct-v0:1"
const bos = "<s>" 
const eos = "</s>"

var verbose *bool

func main() {
    reader := bufio.NewReader(os.Stdin)

    first := true
    var msg string

    for {
        fmt.Print("\nEnter your message: ")

        input, _ := reader.ReadString('\n')
        input = strings.TrimSpace(input)

        if first {
            msg = bos + fmt.Sprintf(userMessageFormat, input)
        } else {
            msg = msg + fmt.Sprintf(userMessageFormat, input)
        }

        payload := MistralRequest{
            Prompt: msg,
        }

        response, err := send(payload)

        fmt.Println("[Assistant]:", response)

        msg = msg + response + eos + " "

        first = false
    }
}
로그인 후 복사

문자열의 시작(bos) 토큰은 대화 시작 시 한 번만 필요하고, eos(문자열의 끝)은 끝을 표시합니다. 단일 대화 교환(사용자 및 보조자)입니다.

스트리밍으로 채팅

제 이전 블로그를 읽어보셨다면 저는 항상 "스트리밍" 예시를 포함하고 싶은 이유는 다음과 같습니다.

  1. 클라이언트 애플리케이션 관점에서 더 나은 경험을 제공합니다
  2. InvokeModelWithResponseStream 함수(InvokeModel의 비동기 대응)를 간과하는 것은 흔한 실수입니다
  3. 부분 모델 페이로드 응답은 흥미롭고 때로는 까다로울 수 있습니다

여기에서 전체 코드를 참조할 수 있습니다

이것을 시도해 보겠습니다. 이 예에서는 Mistral Large를 사용합니다. 모델 ID를 mistral.mistral-large-2402-v1:0으로 변경하면 됩니다. 예제를 실행하려면:

go run chat-streaming/main.go
로그인 후 복사

InvokeModelWithResponseStream(Invoke 대신) 사용에 유의하세요.

    output, err := brc.InvokeModelWithResponseStream(context.Background(), &bedrockruntime.InvokeModelWithResponseStreamInput{
        Body:        payloadBytes,
        ModelId:     aws.String(modelID7BInstruct),
        ContentType: aws.String("application/json"),
    })
    //...
로그인 후 복사

출력을 처리하려면 다음을 사용합니다.

    //...
    resp, err := processStreamingOutput(output, func(ctx context.Context, part []byte) error {
        fmt.Print(string(part))
        return nil
    })
로그인 후 복사

다음은 processStreamingOutput 함수의 몇 가지 비트입니다. 여기에서 코드를 확인할 수 있습니다. 이해해야 할 중요한 점은 부분 응답을 함께 수집하여 최종 출력(MistralResponse)을 생성하는 방법입니다.

func processStreamingOutput(output *bedrockruntime.InvokeModelWithResponseStreamOutput, handler StreamingOutputHandler) (MistralResponse, error) {

    var combinedResult string

    resp := MistralResponse{}
    op := Outputs{}

    for event := range output.GetStream().Events() {
        switch v := event.(type) {
        case *types.ResponseStreamMemberChunk:

            var pr MistralResponse

            err := json.NewDecoder(bytes.NewReader(v.Value.Bytes)).Decode(&pr)
            if err != nil {
                return resp, err
            }

            handler(context.Background(), []byte(pr.Outputs[0].Text))

            combinedResult += pr.Outputs[0].Text
            op.StopReason = pr.Outputs[0].StopReason
    //...
    }

    op.Text = combinedResult
    resp.Outputs = []Outputs{op}

    return resp, nil
}
로그인 후 복사

결론

기억하세요 - 대규모 언어 모델(예: Mistral, Meta Llama, Claude 등)을 사용하여 AI/ML 애플리케이션을 구축한다고 해서 Python을 사용해야 한다는 의미는 아닙니다. Amazon Bedrock과 같은 관리형 플랫폼은 Go!를 비롯한 다양한 프로그래밍 언어로 된 유연한 API를 사용하여 이러한 강력한 모델에 대한 액세스를 제공합니다. AWS SDK 지원 덕분에 원하는 프로그래밍 언어를 사용하여 Amazon Bedrock과 통합하고 생성적 AI 솔루션을 구축할 수 있습니다.

공식 Mistral 문서와 Amazon Bedrock 사용자 가이드를 탐색하여 자세히 알아볼 수 있습니다. 즐거운 빌딩 되세요!

위 내용은 Mistral AI를 사용하여 Go로 생성 AI 애플리케이션 구축의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Golang vs. Python : 성능 및 확장 성 Golang vs. Python : 성능 및 확장 성 Apr 19, 2025 am 12:18 AM

Golang은 성능과 확장 성 측면에서 Python보다 낫습니다. 1) Golang의 컴파일 유형 특성과 효율적인 동시성 모델은 높은 동시성 시나리오에서 잘 수행합니다. 2) 해석 된 언어로서 파이썬은 천천히 실행되지만 Cython과 같은 도구를 통해 성능을 최적화 할 수 있습니다.

Golang 및 C : 동시성 대 원시 속도 Golang 및 C : 동시성 대 원시 속도 Apr 21, 2025 am 12:16 AM

Golang은 동시성에서 C보다 낫고 C는 원시 속도에서 Golang보다 낫습니다. 1) Golang은 Goroutine 및 Channel을 통해 효율적인 동시성을 달성하며, 이는 많은 동시 작업을 처리하는 데 적합합니다. 2) C 컴파일러 최적화 및 표준 라이브러리를 통해 하드웨어에 가까운 고성능을 제공하며 극도의 최적화가 필요한 애플리케이션에 적합합니다.

GOT GO로 시작 : 초보자 가이드 GOT GO로 시작 : 초보자 가이드 Apr 26, 2025 am 12:21 AM

goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity, 효율성, 및 콘크리 론 피처

Golang vs. C : 성능 및 속도 비교 Golang vs. C : 성능 및 속도 비교 Apr 21, 2025 am 12:13 AM

Golang은 빠른 개발 및 동시 시나리오에 적합하며 C는 극도의 성능 및 저수준 제어가 필요한 시나리오에 적합합니다. 1) Golang은 쓰레기 수집 및 동시성 메커니즘을 통해 성능을 향상시키고, 고전성 웹 서비스 개발에 적합합니다. 2) C는 수동 메모리 관리 및 컴파일러 최적화를 통해 궁극적 인 성능을 달성하며 임베디드 시스템 개발에 적합합니다.

Golang vs. Python : 주요 차이점과 유사성 Golang vs. Python : 주요 차이점과 유사성 Apr 17, 2025 am 12:15 AM

Golang과 Python은 각각 고유 한 장점이 있습니다. Golang은 고성능 및 동시 프로그래밍에 적합하지만 Python은 데이터 과학 및 웹 개발에 적합합니다. Golang은 동시성 모델과 효율적인 성능으로 유명하며 Python은 간결한 구문 및 풍부한 라이브러리 생태계로 유명합니다.

Golang 및 C : 성능 상충 Golang 및 C : 성능 상충 Apr 17, 2025 am 12:18 AM

Golang과 C의 성능 차이는 주로 메모리 관리, 컴파일 최적화 및 런타임 효율에 반영됩니다. 1) Golang의 쓰레기 수집 메커니즘은 편리하지만 성능에 영향을 줄 수 있습니다. 2) C의 수동 메모리 관리 및 컴파일러 최적화는 재귀 컴퓨팅에서 더 효율적입니다.

공연 경주 : 골랑 대 c 공연 경주 : 골랑 대 c Apr 16, 2025 am 12:07 AM

Golang과 C는 각각 공연 경쟁에서 고유 한 장점을 가지고 있습니다. 1) Golang은 높은 동시성과 빠른 발전에 적합하며 2) C는 더 높은 성능과 세밀한 제어를 제공합니다. 선택은 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

Golang vs. Python : 장단점 Golang vs. Python : 장단점 Apr 21, 2025 am 12:17 AM

golangisidealforbuildingscalablesystemsdueToitsefficiencyandconcurrency

See all articles