Matplotlib 컬러맵 정규화: 비선형 데이터 시각화
소개
데이터 시각화에서 컬러맵은 숫자 데이터를 색상으로 표현하는 데 사용됩니다. 그러나 때로는 데이터 분포가 비선형일 수 있어 데이터의 세부 사항을 식별하기 어려울 수 있습니다. 이러한 경우, 컬러맵 정규화를 사용하면 데이터를 더 정확하게 시각화할 수 있도록 비선형 방식으로 컬러맵을 데이터에 매핑할 수 있습니다. Matplotlib는 컬러맵을 정규화하는 데 사용할 수 있는 SymLogNorm 및 AsinhNorm을 포함한 여러 정규화 방법을 제공합니다. 이 실습에서는 SymLogNorm 및 AsinhNorm을 사용하여 컬러맵을 비선형 데이터에 매핑하는 방법을 보여줍니다.
VM 팁
VM 시작이 완료된 후 왼쪽 상단을 클릭하여 Notebook 탭으로 전환하여 Jupyter Notebook에 액세스하여 연습해 보세요.
경우에 따라 Jupyter Notebook 로드가 완료될 때까지 몇 초 정도 기다려야 할 수도 있습니다. Jupyter Notebook의 제한으로 인해 작업 검증을 자동화할 수 없습니다.
학습 중 문제가 발생하면 언제든지 래비에게 문의하세요. 세션 종료 후 피드백을 제공해 주시면 신속하게 문제를 해결해 드리겠습니다.
필수 라이브러리 가져오기
이 단계에서는 Matplotlib, NumPy, Matplotlib 색상을 포함하여 필요한 라이브러리를 가져옵니다.
import matplotlib.pyplot as plt import numpy as np import matplotlib.colors as colors
합성 데이터 생성
이 단계에서는 음수 고비 하나와 양수 고비 하나, 양수 고비 하나의 진폭이 음수 고비보다 8배 더 큰 두 개의 고비로 구성된 합성 데이터 세트를 생성합니다. 그런 다음 SymLogNorm을 적용하여 데이터를 시각화하겠습니다.
def rbf(x, y): return 1.0 / (1 + 5 * ((x ** 2) + (y ** 2))) N = 200 gain = 8 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = rbf(X + 0.5, Y + 0.5) Z2 = rbf(X - 0.5, Y - 0.5) Z = gain * Z1 - Z2 shadeopts = {'cmap': 'PRGn', 'shading': 'gouraud'} colormap = 'PRGn' lnrwidth = 0.5
SymLogNorm 적용
이번 단계에서는 합성 데이터에 SymLogNorm을 적용하고 결과를 시각화하겠습니다.
fig, ax = plt.subplots(2, 1, sharex=True, sharey=True) pcm = ax[0].pcolormesh(X, Y, Z, norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1, vmin=-gain, vmax=gain, base=10), **shadeopts) fig.colorbar(pcm, ax=ax[0], extend='both') ax[0].text(-2.5, 1.5, 'symlog') pcm = ax[1].pcolormesh(X, Y, Z, vmin=-gain, vmax=gain, **shadeopts) fig.colorbar(pcm, ax=ax[1], extend='both') ax[1].text(-2.5, 1.5, 'linear') plt.show()
AsinhNorm 적용
이번 단계에서는 합성 데이터에 AsinhNorm을 적용하고 결과를 시각화하겠습니다.
fig, ax = plt.subplots(2, 1, sharex=True, sharey=True) pcm = ax[0].pcolormesh(X, Y, Z, norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1, vmin=-gain, vmax=gain, base=10), **shadeopts) fig.colorbar(pcm, ax=ax[0], extend='both') ax[0].text(-2.5, 1.5, 'symlog') pcm = ax[1].pcolormesh(X, Y, Z, norm=colors.AsinhNorm(linear_width=lnrwidth, vmin=-gain, vmax=gain), **shadeopts) fig.colorbar(pcm, ax=ax[1], extend='both') ax[1].text(-2.5, 1.5, 'asinh') plt.show()
요약
이 실습에서는 SymLogNorm 및 AsinhNorm을 사용하여 컬러맵을 비선형 데이터에 매핑하는 방법을 배웠습니다. 이러한 정규화 방법을 적용하면 데이터를 더 정확하게 시각화하고 데이터의 세부 사항을 더 쉽게 식별할 수 있습니다.
? 지금 연습하세요: Matplotlib 컬러맵 정규화
더 자세히 알고 싶으십니까?
- ? 최신 Python 스킬 트리 알아보기
- ? 더 많은 Python 튜토리얼 읽기
- ? Discord에 참여하거나 @WeAreLabEx로 트윗해 주세요.
위 내용은 Matplotlib 컬러맵 정규화: 비선형 데이터 시각화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

Linux 터미널에서 Python 사용 ...

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Investing.com의 크롤링 전략 이해 많은 사람들이 종종 Investing.com (https://cn.investing.com/news/latest-news)에서 뉴스 데이터를 크롤링하려고합니다.
