데이터 시각화에서 컬러맵은 숫자 데이터를 색상으로 표현하는 데 사용됩니다. 그러나 때로는 데이터 분포가 비선형일 수 있어 데이터의 세부 사항을 식별하기 어려울 수 있습니다. 이러한 경우, 컬러맵 정규화를 사용하면 데이터를 더 정확하게 시각화할 수 있도록 비선형 방식으로 컬러맵을 데이터에 매핑할 수 있습니다. Matplotlib는 컬러맵을 정규화하는 데 사용할 수 있는 SymLogNorm 및 AsinhNorm을 포함한 여러 정규화 방법을 제공합니다. 이 실습에서는 SymLogNorm 및 AsinhNorm을 사용하여 컬러맵을 비선형 데이터에 매핑하는 방법을 보여줍니다.
VM 시작이 완료된 후 왼쪽 상단을 클릭하여 Notebook 탭으로 전환하여 Jupyter Notebook에 액세스하여 연습해 보세요.
경우에 따라 Jupyter Notebook 로드가 완료될 때까지 몇 초 정도 기다려야 할 수도 있습니다. Jupyter Notebook의 제한으로 인해 작업 검증을 자동화할 수 없습니다.
학습 중 문제가 발생하면 언제든지 래비에게 문의하세요. 세션 종료 후 피드백을 제공해 주시면 신속하게 문제를 해결해 드리겠습니다.
이 단계에서는 Matplotlib, NumPy, Matplotlib 색상을 포함하여 필요한 라이브러리를 가져옵니다.
import matplotlib.pyplot as plt import numpy as np import matplotlib.colors as colors
이 단계에서는 음수 고비 하나와 양수 고비 하나, 양수 고비 하나의 진폭이 음수 고비보다 8배 더 큰 두 개의 고비로 구성된 합성 데이터 세트를 생성합니다. 그런 다음 SymLogNorm을 적용하여 데이터를 시각화하겠습니다.
def rbf(x, y): return 1.0 / (1 + 5 * ((x ** 2) + (y ** 2))) N = 200 gain = 8 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = rbf(X + 0.5, Y + 0.5) Z2 = rbf(X - 0.5, Y - 0.5) Z = gain * Z1 - Z2 shadeopts = {'cmap': 'PRGn', 'shading': 'gouraud'} colormap = 'PRGn' lnrwidth = 0.5
이번 단계에서는 합성 데이터에 SymLogNorm을 적용하고 결과를 시각화하겠습니다.
fig, ax = plt.subplots(2, 1, sharex=True, sharey=True) pcm = ax[0].pcolormesh(X, Y, Z, norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1, vmin=-gain, vmax=gain, base=10), **shadeopts) fig.colorbar(pcm, ax=ax[0], extend='both') ax[0].text(-2.5, 1.5, 'symlog') pcm = ax[1].pcolormesh(X, Y, Z, vmin=-gain, vmax=gain, **shadeopts) fig.colorbar(pcm, ax=ax[1], extend='both') ax[1].text(-2.5, 1.5, 'linear') plt.show()
이번 단계에서는 합성 데이터에 AsinhNorm을 적용하고 결과를 시각화하겠습니다.
fig, ax = plt.subplots(2, 1, sharex=True, sharey=True) pcm = ax[0].pcolormesh(X, Y, Z, norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1, vmin=-gain, vmax=gain, base=10), **shadeopts) fig.colorbar(pcm, ax=ax[0], extend='both') ax[0].text(-2.5, 1.5, 'symlog') pcm = ax[1].pcolormesh(X, Y, Z, norm=colors.AsinhNorm(linear_width=lnrwidth, vmin=-gain, vmax=gain), **shadeopts) fig.colorbar(pcm, ax=ax[1], extend='both') ax[1].text(-2.5, 1.5, 'asinh') plt.show()
이 실습에서는 SymLogNorm 및 AsinhNorm을 사용하여 컬러맵을 비선형 데이터에 매핑하는 방법을 배웠습니다. 이러한 정규화 방법을 적용하면 데이터를 더 정확하게 시각화하고 데이터의 세부 사항을 더 쉽게 식별할 수 있습니다.
? 지금 연습하세요: Matplotlib 컬러맵 정규화
위 내용은 Matplotlib 컬러맵 정규화: 비선형 데이터 시각화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!