> 백엔드 개발 > 파이썬 튜토리얼 > ML의 라벨 인코딩

ML의 라벨 인코딩

王林
풀어 주다: 2024-08-23 06:01:08
원래의
1281명이 탐색했습니다.

레이블 인코딩은 머신러닝에서 가장 많이 사용되는 기술 중 하나입니다. 범주형 데이터를 숫자 형식으로 변환하는 데 사용됩니다. 따라서 데이터를 모델에 맞출 수 있습니다.

라벨 인코딩을 사용하는 이유를 알아보겠습니다. 문자열 형식의 필수 열을 포함하는 데이터가 있다고 상상해 보세요. 하지만 모델링은 숫자 데이터에서만 작동하기 때문에 이 데이터를 모델에 맞출 수 없습니다. 어떻게 해야 할까요? 피팅할 데이터를 준비할 때 전처리 단계에서 평가되는 생명을 구하는 기술이 바로 라벨 인코딩입니다.

Label Encoder의 작동 방식을 이해하기 위해 Scikit-Learn 라이브러리의 iris 데이터 세트를 사용하겠습니다. 다음 라이브러리가 설치되어 있는지 확인하세요.

pandas
scikit-learn
로그인 후 복사

라이브러리로 설치하려면 다음 명령을 실행하세요.

$ python install -U pandas scikit-learn
로그인 후 복사

이제 Google Colab Notebook을 열고 Label Encoder 코딩과 학습에 대해 알아보세요.

코딩하자

  • 다음 라이브러리 가져오기부터 시작하세요.
import pandas as pd
from sklearn import preprocessing
로그인 후 복사
  • iris 데이터 세트를 가져오고 사용을 위해 초기화합니다.
from sklearn.datasets import load_iris
iris = load_iris()
로그인 후 복사
  • 이제 인코딩하려는 데이터를 선택해야 합니다. 붓꽃의 이름을 인코딩하겠습니다.
species = iris.target_names
print(species)
로그인 후 복사

출력:

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
로그인 후 복사
로그인 후 복사
  • 전처리에서 LabelEncoder 클래스를 인스턴스화해 보겠습니다.
label_encoder = preprocessing.LabelEncoder()
로그인 후 복사
  • 이제 레이블 인코더를 사용하여 데이터를 맞출 준비가 되었습니다.
label_encoder.fit(species)
로그인 후 복사

다음과 유사하게 출력됩니다.

Label Encoding in ML

이 결과가 나오면 데이터를 성공적으로 맞춘 것입니다. 그런데 문제는 각 종에 어떤 값이 어떤 순서로 부여되어 있는지 어떻게 알 수 있느냐는 것입니다.

Label Encoder가 데이터에 맞는 순서는 classes_ 속성에 저장됩니다. 인코딩은 0부터 data_length-1까지 시작됩니다.

label_encoder.classes_
로그인 후 복사

출력:

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
로그인 후 복사
로그인 후 복사

레이블 인코더는 자동으로 데이터를 정렬하고 왼쪽부터 인코딩을 시작합니다. 여기:

setosa -> 0
versicolor -> 1
virginica -> 2
로그인 후 복사
  • 이제 피팅된 데이터를 테스트해 보겠습니다. 붓꽃 종인 세토사(setosa)를 변형시켜 보겠습니다.
label_encoder.transform(['setosa'])
로그인 후 복사

출력: 배열([0])

또, 버지니아종을 변형시키면요.

label_encoder.transform(['virginica'])
로그인 후 복사

출력: 배열([2])

["setosa", "virginica"] 등의 종 목록을 입력할 수도 있습니다

레이블 인코더에 대한 Scikit Learn 문서 >>>

위 내용은 ML의 라벨 인코딩의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:dev.to
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿