AI가 솜씨를 분석하고 난도를 자동 조절해주는 날도 가깝다? 그 기법과 레벨 자동 생성에의 응용이 말한 세션을 보고 [CEDEC 2024]
AI가 플레이어의 솜씨를 보고 섬세하게 난이도를 조정하고, 심지어 무대까지 만들어 주는 날도 가까울지도 모른다. 개발자용 컨퍼런스「CEDEC 2024」의 2일째, 2024년 8월 22일에 행해진 응용”에서는 스퀘어 에닉스의 AI&엔진 개발 디비전에서의 연구 성과가 밝혀졌다.
![]() |
● 「플레이어의 『능숙함』과 게임의 『어려움』을 분석하는 수법과 레벨 자동 생성에의 응용」 등단자
- 송 아성씨(스퀘어·에닉스 AI&엔진 개발 디비전 프로그래머)
- 성소 헌씨(스퀘어·에닉스 AI&엔진 개발 디비전 AI 프로그래머)
![]() |
AI가 플레이어의 솜씨를 분석해, 기분 좋은 어려움을 연출한다
게임을 놀기에 있어서, 플레이어에게는 공격을 맞추거나 회피하는 등의 다양한 능력이 요구된다. 플레이어마다 능숙한 분야와 서투른 분야가 있지만, 현재의 게임에서는 난도 설정이 획일적이며, 개별 플레이어에 맞춘 것은 되어 있지 않다고 송씨는 지적한다.이러한 상태에서는 난도를 바꾸면 모든 요소가 일률적으로 상하해 버려, 꽉이 발생할 수 있다. 예를 들면, 회피가 약하고 공격이 특기인 사람이 난이도를 낮추고 회피가 용이해지면, 공격에 대해서는 원래 높은 스킬을 가지고 있으므로, 너무 간단해져 버린다고 하는 상태다.
거기서, 송씨는
「분야마다의 난도를 동적으로 조정할 수 있으면, 플레이어 각각의 자랑이나 서투른 체험을 주어지는 것이 아닐까」 라고 생각했다고 한다. 그러기 위해서는 미리 플레이어의 능력을 분류한 후에 AI에 판정과 분석을 실시하는 구조가 필요하다.
![]() |
![]() |
![]() |
![]() |
![]() |
이를 보고 게임 마스터 AI는 게임의 전개를 방해한다. 자신 분야이지만 어렵다고 느끼고 있는 경우는 아군 NPC에 협력시켜, 서투르지만 과제 자체는 쉬운 경우는 TIPS를 표시해 상달을 지원한다고 하는, 세세한 팔로우를 해 가는 것이다. 또, 연출에도 응용할 수 있어 고전하고 있다면 배경을 엉망으로 한 데다 비를 내리고 불온한 분위기를 표현할 수도 있다.
플레이어가 고전하는 것 같으면 그 지원을 하면 좋고, 반대로 난이도가 부족한 것 같으면 적이나 장애물을 늘리면 좋다고 하는 것처럼, 플레이어가 씹는 느낌을 주는 「기분 좋은 어려움」을 표현 하는 것이 가능해진다고 한다.
![]() |
![]() |
![]() |
![]() |
![]() |
이 어빌리티 노드 방식에서는 평가에 사용하는 MR과 CR의 산출이 중요해지기 때문에 다양한 궁리가 집중되고 있다. 어빌리티 노드 중에는 직접 평가할 수 있는 것과 그렇지 않은 것이 있다. 예를 들면 「적을 쓰러뜨린다」 경우는, 적을 쓰러뜨린 수와 쓰러뜨릴 수 없는 수로부터 MR, 레벨상으로 배치되어 있는 적의 종류나 수로부터 CR을 산출할 수 있다.
하지만, 전술계 어빌리티는 「스테이터스를 늘린다」 「스테이지를 잘 클리어」등 추상 때문에, 그래프상에서 부모가 되어 있는 어빌리티의 MR이나 CR로부터 웨이트를 이용해 추정한다. 이 생각 자체는 FPS나 턴제 RPG, FPS 등 장르나 맵의 형식을 불문하고 사용할 수 있는 것이다.
미래에는 플레이가 잘 된 이유나 그렇지 않은 이유를 추정하고, 원인이 된 어빌리티의 연습이 되는 콘텐츠를 제시할 수 있도록 하고 싶다고 송씨는 향후 전망을 말했다.
![]() |
![]() |
![]() |
![]() |
![]() |
AI를 이용하여 플레이어의 솜씨에 맞는 스테이지를 자동 생성한다
강연의 후반에서는 성소씨가 어빌리티 노드나 CR을 레벨의 자동 생성에 활용한 예, 즉 AI가 플레이어의 솜씨에 응한 스테이지를 만들어 내는 대처에 대해 말했다.
Procedural Content Generation(절차형 컨텐츠 생성, 이하 PCG)을 레벨 생성에 사용하는 경우, 이 예라면 각각의 CR에 따른 PCG의 알고리즘이 필요하게 되지만, CR이 사양 변경하면 알고리즘도 사용할 수 없게 되어, 복수 의 CR을 고려한 알고리즘으로 했을 경우는 너무 복잡해진다는 약점이 있다.
이를 해결하기 위해 사용된 것이 Procedural Content Generation via. Reinforcement Learning(강화 학습에 의한 레벨 생성, 이하 PCGRL)이다. 인간이 설정한 보수에 근거해 레벨 생성을 할 수 있다는 것으로, 이 경우 CR을 보수로 하면 AI가 레벨을 만드는 방법을 학습해 준다.
강화 학습이란 에이전트가 보수에 근거해 최선의 방책을 학습해 가는 것으로, 보다 많은 보수를 얻을 수 있는 방법을 모색해 간다. PCGRL에서는 에이전트가 편집 중인 레벨에 장애물 등을 배치하면 보상을 받을 수 있으므로, 보다 높은 보상(스테이지 설계의 의도에 맞는 배치)을 목표로 학습해 나간다.
![]() |
![]() |
![]() |
PCGRL과 한 마디에 가도 다양한 수법이 있어, 각각에 제약이 있다. 예를 들면, 「크레이트를 골에 밀어넣는 퍼즐 게임(이른바 “창고번”일 것이다)」의 자동 생성에 PCGRL를 이용하는 경우, 보수를 조정하는 것 어느 정도의 난도를 가진 레벨은 만들 수 있지만, 크레이트나 골의 수를 컨트롤하는 등 파라미터에 따른 레벨은 만들 수 없다.
즉, 목표인 CR에 따른 레벨 생성은 불가능하다는 것이다. 이 문제를 해결하는 것이 Controllable PCGRL이 된다. 앞서 언급한 예라면 크레이트나 골의 수, 최단 절차의 수수 등 부분을 제어할 수 있는 PCGRL이지만, 이번에 만들고 싶은 슈팅과 같은 복잡한 게임 레벨은 생성할 수 없다.
Multi-layer PCGRL이라면 적이나 지형 등의 「레벨 레이어」와 CR등의 정보를 가지는 「정보 레이어」라고 하는 레이어나 지형 생성 모듈, 적 배치 모듈 등을 조합하는 것으로, 복잡한 게임의 레벨도 자동 생성 할 수 있다. 지형 생성 모듈이 지형을 만들고, 이를 바탕으로 적 배치 모듈이 적을 배치, 또한 아이템 배치 모듈이 아이템을 놓는 것으로 레벨이 완성되는 것이다.
![]() |
![]() |
![]() |
강연에서는 지형 파괴라는 어빌리티에 대해 Multi-layer PCGRL이 어떻게 레벨을 자동 생성하는지도 설명되었다. Multi-layer PCGRL에서는 1화면씩 자동 생성을 한다. 그 때의 목표가 되는 것이 1화면분 20행×16열의 CR의 평균을 취한 「평균 20행 CR」. Multi-layer PCGRL은 생성된 레벨의 평균 CR이 평균 20행 CR이 되도록 시행착오를 반복한다. 즉, 어떤 레벨을 생성하고 싶은지의 방침이 평균 20행 CR이며, 합치하고 있을 만큼 높은 보상을 받을 수 있는 것이다.
이번 예에서는 약 4일간에 2000만 스텝을 학습시켜, 랜덤인 CR을 지정해 100의 레벨(이 경우는 100화면분의 맵)을 만든다고 하는 테스트를 실시하고 있다. 보통으로 생성한다면 평균 0.62초, 길 등 플레이어를 유도하는 지형을 생성시켜도 0.46초, 장애물을 추가시킨다면 0.74초와 모두 고속으로, 게다가 생성한 레벨의 모두가 평균 20행 CR이라는 기준을 충족시키는 것으로 되어 있었다고 한다.
평평한 지형에 적이나 아이템을 평균 20행 CR 기준으로 배치했을 경우, 적은 평균 0.32초, 아이템은 0.48초로 배치할 수 있고, 100%가 평균 20행 CR을 가지게 되었다고 한다. 기존 레벨을 PCGRL에 편집시키는 것으로, 처음에는 간단하지만 후반은 어렵다고 하는 메리하리가 있는 것을 생성하는 것도 가능하다고 한다. 또, 플레이 중에 실시간으로 PCGRL에 레벨 생성시키는 테스트를 실시한 결과, 양호한 결과가 얻어졌다고 한다.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
마지막으로 송씨는 어빌리티 분석 수법에 대해 콘텐츠나 퀘스트를 동적 생성하거나 플레이어가 만든 맵을 AI가 완성시키는 것 외에 플레이어 VS.게임 마스터 AI와 같은 싱글 플레이인데 멀티 플레이를 연상시키는 새로운 게임 성에 응용할 수 있는 것이 아닐까 향후 전망에 대해 이야기하고 강연을 마무리했다.
![]() |
AI에 의한 난도의 자동 조정은 옛부터 대처가 계속되는 게임 개발자에게 있어서의 꿈의 하나이다. 현대의 AI 연구와 머신 파워에 의해, 그 꿈은 보다 현실적이고 광범위하게 되었다고 말할 수 있을 것이다. 플레이어로서도, 자신의 솜씨에 맞는 게임을 즐길 수 있고, 레벨의 자동 생성으로 전개가 보다 버라이어티가 풍부한 것이 되기 때문에 바라거나 실현하거나 하는 곳이다. 넓은 층을 향해 플레이하기 쉬운 환경을 정비해 나가는 최근의 트렌드도 있어, 강한 요구가 있다고 생각되는 난도 자동 조정이나 레벨의 자동 생성이지만, 본 강연에서는 그 가능성을 강하게 느껴졌다.
위 내용은 AI가 솜씨를 분석하고 난도를 자동 조절해주는 날도 가깝다? 그 기법과 레벨 자동 생성에의 응용이 말한 세션을 보고 [CEDEC 2024]의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Nintendo Switch 2의 오른쪽 Joy-Con은 이제 전용 GameChat 버튼 (C 버튼)을 자랑합니다. 이 흥미 진진한 추가는 콘솔의 향상된 소셜 기능을 잠금 해제하여 게임 내 커뮤니케이션을 원활하게 할 수 있습니다. 닌텐도 중 공식 공개 이전

Nintendo Switch 2 가격이 공식적으로 공개되었습니다! Nintendo Direct는 콘솔의 기능과 다가오는 게임을 보여 주었지만 가격은 후속 보도 자료에서 조용히 발표되었습니다. 6 월 5 일에 출시 준비를하십시오! 표준 닌텐

UFC 316 : 타이틀 싸움과 흥미 진진한 매치업의 더블 헤더 Dana White의 Instagram 라이브 발표는 MMA 세계를 점화시켜 6 월 7 일 뉴저지 주 뉴 어크에있는 Prudential Center에서 6 월 7 일에 쌓인 UFC 316 카드를 공개했습니다. 이 행사는 하나가 아닙니다

Hollow Knight : Silksong은 공식적으로 2025 년 Nintendo Switch 2에오고 있습니다! 6 년간의 대기 후, 유명한 메트로이드 바니아 인 Hollow Knight의 매우 기대되는 속편이 마침내 출시되고 있습니다. 이 뉴스는 닌텐도의 4 월에 확인되었습니다

레고는 포켓몬 테마 빌딩 블록 세트를 출시하려고합니다! 2026 년에 LEGO는 Pokémon의 승인을받을 것입니다. Pokémon은 의심 할 여지없이 LEGO 팬과 Pokémon 팬들에게 큰 이벤트입니다! 레고는 최근 몇 년 동안 턱부터 황혼에 이르기까지 거의 모든 라이센스를 가지고 있었지만 거의 모든 것이 있지만 포켓몬은 항상 예외였습니다. 2017 년 이래로 Mattel의 Microtiles는 Pokémon에 의해 승인되었지만이 상황은 변경 될 예정입니다. 업데이트 : 2025 년 3 월 18 일 14:17 EST가 Lara Jackson에 의해보고되었습니다. 레고는 공식적으로 포켓몬과의 협력을 확인했다. 초기 누출 후 LEGO는 공식 웹 사이트를 업데이트하고 공식적으로 Pokémon과 함께 작동 할 것이라고 발표했습니다. 특정 세트 나 제품은 아직 발표되지 않았지만 공식 웹 사이트는 레고 벽돌로 만든 피카추 꼬리를 보여줍니다.

DAREDEVIL : Born Again의 시즌 1 - 이상한 시작, 유망한 마무리? Daredevil에 대한 7 개의 에피소드 : 다시 태어 났고, 그 경험은… 이례적이었습니다. 미리 스포일러 : Karen Page와 Foggy Nelson의 귀환은 초기 RE 이후에 크게 예상되었습니다.

2025 Steam Spring Sale은 라이브로 수천 개의 게임에 대한 대량 할인을 제공합니다! 여기에는 올해의 2024 RPG, Metaphor : Refantazio 및 더 많은 최고의 타이틀이 포함됩니다. Steam의 계절 판매는 깊은 할인, 플레이 저축으로 전설적입니다.

Nintendo Switch 2 확인 : 선택 게임의 무료 업그레이드! Nintendo Switch 소유자를위한 흥미로운 소식! Nintendo의 최근 직접 프레젠테이션은 여러 게임이 다가오는 스위치 2에 대한 무료 업그레이드를받을 것이라고 밝혔다.
