> 백엔드 개발 > 파이썬 튜토리얼 > Tensorflow 음악 예측

Tensorflow 음악 예측

WBOY
풀어 주다: 2024-08-27 06:03:08
원래의
682명이 탐색했습니다.

Tensorflow music prediction

이 글에서는 텐서플로우를 사용해 음악 스타일을 예측하는 방법을 보여드리겠습니다.
제 예에서는 테크노와 클래식 음악을 비교합니다.

내 github에서 코드를 찾을 수 있습니다:
https://github.com/victordalet/sound_to_partition


I - 데이터세트

첫 번째 단계에서는 하나의 데이터 세트를 생성하고 내부에 음악 스타일에 대한 폴더 하나를 추가해야 합니다. 예를 들어 WAV 음악을 넣을 테크노 폴더 하나와 클래식 폴더를 추가합니다.

II - 기차

max_epochs 인수를 사용하여 train 파일을 생성합니다.

데이터 세트 폴더의 디렉터리에 해당하는 생성자의 클래스를 수정합니다.

로딩 및 처리 방법에서는 다른 디렉터리에서 wav 파일을 가져와서 스펙토그램을 얻습니다.

훈련 목적으로 Keras 컨볼루션과 모델을 사용합니다.

import os
import sys
from typing import List

import librosa
import numpy as np
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
from tensorflow.image import resize



class Train:

    def __init__(self):
        self.X_train = None
        self.X_test = None
        self.y_train = None
        self.y_test = None
        self.data_dir: str = 'dataset'
        self.classes: List[str] = ['techno','classic']
        self.max_epochs: int = int(sys.argv[1])

    @staticmethod
    def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)):
        data = []
        labels = []

        for i, class_name in enumerate(classes):
            class_dir = os.path.join(data_dir, class_name)
            for filename in os.listdir(class_dir):
                if filename.endswith('.wav'):
                    file_path = os.path.join(class_dir, filename)
                    audio_data, sample_rate = librosa.load(file_path, sr=None)
                    mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)
                    mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape)
                    data.append(mel_spectrogram)
                    labels.append(i)

        return np.array(data), np.array(labels)

    def create_model(self):
        data, labels = self.load_and_preprocess_data(self.data_dir, self.classes)
        labels = to_categorical(labels, num_classes=len(self.classes))  # Convert labels to one-hot encoding
        self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(data, labels, test_size=0.2,
                                                                                random_state=42)

        input_shape = self.X_train[0].shape
        input_layer = Input(shape=input_shape)
        x = Conv2D(32, (3, 3), activation='relu')(input_layer)
        x = MaxPooling2D((2, 2))(x)
        x = Conv2D(64, (3, 3), activation='relu')(x)
        x = MaxPooling2D((2, 2))(x)
        x = Flatten()(x)
        x = Dense(64, activation='relu')(x)
        output_layer = Dense(len(self.classes), activation='softmax')(x)
        self.model = Model(input_layer, output_layer)

        self.model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])

    def train_model(self):
        self.model.fit(self.X_train, self.y_train, epochs=self.max_epochs, batch_size=32,
                       validation_data=(self.X_test, self.y_test))
        test_accuracy = self.model.evaluate(self.X_test, self.y_test, verbose=0)
        print(test_accuracy[1])

    def save_model(self):
        self.model.save('weight.h5')


if __name__ == '__main__':
    train = Train()
    train.create_model()
    train.train_model()
    train.save_model()
로그인 후 복사

III - 테스트

모델을 테스트하고 사용하기 위해 무게를 검색하고 음악의 스타일을 예측하는 클래스를 만들었습니다.

생성자에 올바른 클래스를 추가하는 것을 잊지 마세요.

from typing import List

import librosa
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.image import resize
import tensorflow as tf



class Test:

    def __init__(self, audio_file_path: str):
        self.model = load_model('weight.h5')
        self.target_shape = (128, 128)
        self.classes: List[str] = ['techno','classic']
        self.audio_file_path: str = audio_file_path

    def test_audio(self, file_path, model):
        audio_data, sample_rate = librosa.load(file_path, sr=None)
        mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)
        mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), self.target_shape)
        mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + self.target_shape + (1,))

        predictions = model.predict(mel_spectrogram)

        class_probabilities = predictions[0]

        predicted_class_index = np.argmax(class_probabilities)

        return class_probabilities, predicted_class_index

    def test(self):
        class_probabilities, predicted_class_index = self.test_audio(self.audio_file_path, self.model)

        for i, class_label in enumerate(self.classes):
            probability = class_probabilities[i]
            print(f'Class: {class_label}, Probability: {probability:.4f}')

        predicted_class = self.classes[predicted_class_index]
        accuracy = class_probabilities[predicted_class_index]
        print(f'The audio is classified as: {predicted_class}')
        print(f'Accuracy: {accuracy:.4f}')
로그인 후 복사

위 내용은 Tensorflow 음악 예측의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:dev.to
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿