기록 인식 검색기는 어떻게 작동하나요?
이 게시물에서 논의되는 기록 인식 검색기는 LangChain 패키지의 create_history_aware_retriever 함수에 의해 반환되는 것입니다. 이 함수는 생성자에서 다음 입력을 받도록 설계되었습니다.
- LLM(질의를 받고 답변을 반환하는 언어 모델)
- 벡터 스토어 검색기(쿼리를 수신하고 관련 문서 목록을 반환하는 모델)
- 채팅 기록(일반적으로 인간과 AI 간의 메시지 상호 작용 목록).
호출되면 기록 인식 검색기가 사용자 쿼리를 입력으로 받아 관련 문서 목록을 출력합니다. 관련 문서는 채팅 기록에서 제공되는 컨텍스트와 쿼리를 결합하여 작성됩니다.
마지막으로 작업 흐름을 요약하겠습니다.
설정하기
from langchain.chains import create_history_aware_retriever from langchain_community.document_loaders import WebBaseLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_chroma import Chroma from dotenv import load_dotenv import bs4 load_dotenv() # To get OPENAI_API_KEY
def create_vectorsore_retriever(): """ Returns a vector store retriever based on the text of a specific web page. """ URL = r'https://lilianweng.github.io/posts/2023-06-23-agent/' loader = WebBaseLoader( web_paths=(URL,), bs_kwargs=dict( parse_only=bs4.SoupStrainer(class_=("post-content", "post-title", "post-header")) )) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0, add_start_index=True) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings()) return vectorstore.as_retriever()
def create_prompt(): """ Returns a prompt instructed to produce a rephrased question based on the user's last question, but referencing previous messages (chat history). """ system_instruction = """Given a chat history and the latest user question \ which might reference context in the chat history, formulate a standalone question \ which can be understood without the chat history. Do NOT answer the question, \ just reformulate it if needed and otherwise return it as is.""" prompt = ChatPromptTemplate.from_messages([ ("system", system_instruction), MessagesPlaceholder("chat_history"), ("human", "{input}")]) return prompt
llm = ChatOpenAI(model='gpt-4o-mini') vectorstore_retriever = create_vectorsore_retriever() prompt = create_prompt()
history_aware_retriever = create_history_aware_retriever( llm, vectorstore_retriever, prompt )
그것을 사용하여
여기서는 채팅 기록이 없는 질문이므로 검색자는 마지막 질문과 관련된 문서로만 응답합니다.
chat_history = [] docs = history_aware_retriever.invoke({'input': 'what is planning?', 'chat_history': chat_history}) for i, doc in enumerate(docs): print(f'Chunk {i+1}:') print(doc.page_content) print()
Chunk 1: Planning is essentially in order to optimize believability at the moment vs in time. Prompt template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1) Relationships between agents and observations of one agent by another are all taken into consideration for planning and reacting. Environment information is present in a tree structure. Chunk 2: language. Essentially, the planning step is outsourced to an external tool, assuming the availability of domain-specific PDDL and a suitable planner which is common in certain robotic setups but not in many other domains. Chunk 3: Another quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external classical planner to do long-horizon planning. This approach utilizes the Planning Domain Definition Language (PDDL) as an intermediate interface to describe the planning problem. In this process, LLM (1) translates the problem into “Problem PDDL”, then (2) requests a classical planner to generate a PDDL plan based on an existing “Domain PDDL”, and finally (3) translates the PDDL plan back into natural Chunk 4: Planning Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks. Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results. Memory
이제 리트리버는 채팅 기록을 기반으로 인간이 계획뿐만 아니라 작업 분해에 대해서도 알고 싶어한다는 것을 알고 있습니다. 따라서 두 테마를 모두 참조하는 텍스트 덩어리로 응답합니다.
chat_history = [ ('human', 'when I ask about planning I want to know about Task Decomposition too.')] docs = history_aware_retriever.invoke({'input': 'what is planning?', 'chat_history': chat_history}) for i, doc in enumerate(docs): print(f'Chunk {i+1}:') print(doc.page_content) print()
Chunk 1: Task decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\n1.", "What are the subgoals for achieving XYZ?", (2) by using task-specific instructions; e.g. "Write a story outline." for writing a novel, or (3) with human inputs. Chunk 2: Fig. 1. Overview of a LLM-powered autonomous agent system. Component One: Planning# A complicated task usually involves many steps. An agent needs to know what they are and plan ahead. Task Decomposition# Chunk 3: Planning Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks. Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results. Memory Chunk 4: Challenges in long-term planning and task decomposition: Planning over a lengthy history and effectively exploring the solution space remain challenging. LLMs struggle to adjust plans when faced with unexpected errors, making them less robust compared to humans who learn from trial and error.
이제 모든 질문은 채팅 기록을 기반으로 합니다. 그리고 올바른 개념을 참조하는 텍스트 덩어리로 응답하는 것을 볼 수 있습니다.
chat_history = [ ('human', 'What is ReAct?'), ('ai', 'ReAct integrates reasoning and acting within LLM by extending the action space to be a combination of task-specific discrete actions and the language space')] docs = history_aware_retriever.invoke({'input': 'It is a way of doing what?', 'chat_history': chat_history}) for i, doc in enumerate(docs): print(f'Chunk {i+1}:') print(doc.page_content) print()
Chunk 1:<br> ReAct (Yao et al. 2023) integrates reasoning and acting within LLM by extending the action space to be a combination of task-specific discrete actions and the language space. The former enables LLM to interact with the environment (e.g. use Wikipedia search API), while the latter prompting LLM to generate reasoning traces in natural language.<br> The ReAct prompt template incorporates explicit steps for LLM to think, roughly formatted as:<br> Thought: ...<br> Action: ...<br> Observation: ... <p>Chunk 2:<br> Fig. 2. Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: Yao et al. 2023).<br> In both experiments on knowledge-intensive tasks and decision-making tasks, ReAct works better than the Act-only baseline where Thought: … step is removed.</p> <p>Chunk 3:<br> The LLM is provided with a list of tool names, descriptions of their utility, and details about the expected input/output.<br> It is then instructed to answer a user-given prompt using the tools provided when necessary. The instruction suggests the model to follow the ReAct format - Thought, Action, Action Input, Observation.</p> <p>Chunk 4:<br> Case Studies#<br> Scientific Discovery Agent#<br> ChemCrow (Bran et al. 2023) is a domain-specific example in which LLM is augmented with 13 expert-designed tools to accomplish tasks across organic synthesis, drug discovery, and materials design. The workflow, implemented in LangChain, reflects what was previously described in the ReAct and MRKLs and combines CoT reasoning with tools relevant to the tasks:<br> </p>
결론
결론적으로, 기록 인식 검색기의 작업 흐름은 .invoke({'input': '...', 'chat_history': '...'}) 호출 시 다음과 같이 작동합니다.
- 프롬프트의 입력 및 chat_history 자리 표시자를 지정된 값으로 대체하여 기본적으로 "이 채팅 기록과 마지막 입력을 가져와서 마지막 입력을 바꿔보세요"라는 즉시 사용 가능한 새로운 프롬프트를 생성합니다. 채팅내역을 보지 않고도 누구나 이해할 수 있도록 말이죠.
- 새 프롬프트를 LLM으로 보내고 다시 표현된 입력을 받습니다.
- 그런 다음 다시 표현된 입력을 벡터 저장소 검색기로 보내고 이 다시 표현된 입력과 관련된 문서 목록을 받습니다.
- 마지막으로 관련 문서 목록이 반환됩니다.
Obs.: 텍스트를 벡터로 변환하는 데 사용되는 임베딩은 Chroma.from_documents가 호출될 때 지정된 임베딩이라는 점에 유의하는 것이 중요합니다. 아무것도 지정되지 않은 경우(현재의 경우) 기본 크로마 임베딩이 사용됩니다.
위 내용은 기록 인식 검색기는 어떻게 작동하나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.
