Pytest 및 PostgreSQL: 모든 테스트를 위한 새로운 데이터베이스(2부)
이전 게시물에서는 테스트 방법 전/후에 Postgres 데이터베이스를 생성/드롭하는 Pytest Fixture를 만들었습니다. 이 부분에서는 Pytest 팩토리 픽스처를 사용하여 픽스처를 더욱 유연하고 구성 가능하도록 개선하고 싶습니다.
정적 고정물의 한계
예를 들어 테스트에서 모의할 데이터베이스가 두 개 이상인 경우
def test_create_user(test_db1, test_db2): ...
거의 두 개의 동일한 조명기를 만들어야 합니다.
TEST_DB_URL = "postgresql://localhost" TEST_DB1_NAME = "test_foo" TEST_DB2_NAME = "test_bar" @pytest.fixture def test_db1(): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB1_NAME}" WITH (FORCE)') cur.execute(f'CREATE DATABASE "{TEST_DB1_NAME}"') with psycopg.connect(TEST_DB_URL, dbname=TEST_DB1_NAME) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB1_NAME}" WITH (FORCE)') @pytest.fixture def test_db2(): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB2_NAME}" WITH (FORCE)') cur.execute(f'CREATE DATABASE "{TEST_DB2_NAME}"') with psycopg.connect(TEST_DB_URL, dbname=TEST_DB2_NAME) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB2_NAME}" WITH (FORCE)')
Pytest 고정물 공장
여기에서는 "정적" 고정 장치가 약간 제한됩니다. 약간의 차이만 있으면 거의 동일하게 필요한 경우 코드를 복제해야 합니다. 다행히 Pytest에는 공장을 고정 장치로 개념이 있습니다.
Factory Fixture는 또 다른 Fixture를 반환하는 Fixture입니다. 모든 Factory와 마찬가지로 함수이기 때문에 반환된 Fixture를 사용자 정의하기 위한 인수를 받아들일 수 있습니다. 관례적으로 make_test_db와 같이 make_* 접두사를 붙일 수 있습니다.
특수 설비
픽스처 팩토리 make_test_db에 대한 유일한 인수는 생성/삭제할 테스트 데이터베이스 이름입니다.
그러므로 make_test_db 팩토리 픽스처를 기반으로 두 개의 "특수" 픽스처를 만들어 보겠습니다.
사용 방법은 다음과 같습니다.
@pytest.fixture def test_db_foo(make_test_db): yield from make_test_db("test_foo") @pytest.fixture def test_db_bar(make_test_db): yield from make_test_db("test_bar")
참고: 수확량
수익률을 보셨나요? 생성기 내에서 데이터 흐름과 제어를 처리하는 방법에 따라 수율과 수율 사이에 주요 차이점이 있습니다.
Python에서는 yield와 Yield from이 모두 생성기 함수 내에서 사용되어 일련의 값을 생성합니다. 그러나
- Yield는 생성기 함수의 실행을 일시 중지하고 호출자에게 단일 값을 반환하는 데 사용됩니다.
- yield from은 값 생성을 다른 생성기에 위임하는 데 사용됩니다. 기본적으로 중첩된 생성기를 "평평화"하여 생성된 값을 외부 생성기의 호출자에게 직접 전달합니다.
즉, 우리는 전문 고정 장치가 아닌 고정 장치 공장에서 "양보"하고 싶습니다. 따라서 여기서는 Yield from이 필요합니다.
데이터베이스 생성/삭제를 위한 픽스처 팩토리
원래 픽스처 생성/삭제 데이터베이스에 필요한 변경 사항은 실제로 코드를 내부 함수로 래핑하는 것 외에는 거의 없습니다.
@pytest.fixture def make_test_db(): def _(test_db_name: str): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{test_db_name}" WITH (FORCE)') # type: ignore cur.execute(f'CREATE DATABASE "{test_db_name}"') # type: ignore with psycopg.connect(TEST_DB_URL, dbname=test_db_name) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{test_db_name}" WITH (FORCE)') # type: ignore yield _
보너스: 마이그레이션 픽스처를 공장 픽스처로 다시 작성
이전 부분에서는 방금 생성된 빈 데이터베이스에 Yoyo 마이그레이션을 적용하는 픽스쳐도 있었습니다. 또한 그다지 유연하지도 않았습니다. 동일한 작업을 수행하고 실제 코드를 내부 함수로 래핑해 보겠습니다.
이 경우 코드는 테스트 메서드에서 반환된 후 정리 작업을 수행할 필요가 없기 때문에(수익률 없음)
- 팩토리 픽스쳐는 (수율이 아닌) 내부 함수를 반환합니다
- 특수 설비 호출(양보하지 않음) 공장 설비
@pytest.fixture def make_yoyo(): """Applies Yoyo migrations to test DB.""" def _(test_db_name: str, migrations_dir: str): url = ( urlparse(TEST_DB_URL) . _replace(scheme="postgresql+psycopg") . _replace(path=test_db_name) .geturl() ) backend = get_backend(url) migrations = read_migrations(migrations_dir) if len(migrations) == 0: raise ValueError(f"No Yoyo migrations found in '{migrations_dir}'") with backend.lock(): backend.apply_migrations(backend.to_apply(migrations)) return _ @pytest.fixture def yoyo_foo(make_yoyo): migrations_dir = str(Path(__file__, "../../foo/migrations").resolve()) make_yoyo("test_foo", migrations_dir) @pytest.fixture def yoyo_bar(make_yoyo): migrations_dir = str(Path(__file__, "../../bar/migrations").resolve()) make_yoyo("test_bar", migrations_dir)
두 개의 데이터베이스가 필요하고 여기에 마이그레이션을 적용하는 테스트 방법:
from psycopg import Connection def test_get_new_users_since_last_run( test_db_foo: Connection, test_db_bar: Connection, yoyo_foo, yoyo_bar): test_db_foo.execute("...") ...
결론
Pytest 방법에 대한 데이터베이스를 생성하고 삭제하는 자체 픽스처 팩토리를 구축하는 것은 실제로 Python 생성기와 연산자의 산출량/수익률을 연습하는 데 좋은 연습입니다.
이 기사가 귀하의 데이터베이스 테스트 스위트에 도움이 되었기를 바랍니다. 궁금한 점은 댓글로 남겨주시면 즐거운 코딩 되세요!
위 내용은 Pytest 및 PostgreSQL: 모든 테스트를 위한 새로운 데이터베이스(2부)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
