백엔드 개발 파이썬 튜토리얼 pyplot을 이용한 실시간 플로팅

pyplot을 이용한 실시간 플로팅

Sep 03, 2024 pm 05:17 PM

Real-time plotting with pyplot

간단한 투표 앱에서 생성한 데이터를 그래프로 표시하고 싶었습니다. 나는 과거에 pyplot을 만지작거렸지만 처음부터 아무것도 만들려고 시도한 적이 없습니다. 운 좋게도 매우 인기가 있으며 StackOverflow 및 다른 곳에서 수많은 예제를 찾을 수 있습니다.

시간이 지남에 따라 그래프 업데이트와 관련된 SO 답변으로 검색을 시작했습니다.

import matplotlib.pyplot as plt
import numpy as np

# You probably won't need this if you're embedding things in a tkinter plot...
plt.ion()

x = np.linspace(0, 6*np.pi, 100)
y = np.sin(x)

fig = plt.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(x, y, 'r-') # Returns a tuple of line objects, thus the comma

for phase in np.linspace(0, 10*np.pi, 500):
    line1.set_ydata(np.sin(x + phase))
    fig.canvas.draw()
    fig.canvas.flush_events()
로그인 후 복사

이 코드는 사인파 변화 단계에 애니메이션을 적용합니다.

처음 두 줄은 사용하려는 라이브러리를 가져옵니다. matplotlib.pyplot은 GUI를 플로팅하고 처리합니다.

이해하면(모르겠지만) ion() 메서드는 pyplot이 GUI를 구동하도록 만듭니다. tkinter 프로그램 내에서 사용할 수도 있고 정적 이미지를 생성하는 데 사용할 수도 있지만, 우리의 경우 플롯의 GUI를 처리하도록 하는 것이 합리적입니다. (나중에 플러시_events() 호출이 수행하는 작업은 Figure 창과의 상호 작용을 허용하는 것입니다.)

이 예에서는 numpy 메서드 linspace()를 사용하여 x 값을 생성합니다. 멋진 Python 목록인 numpy 배열을 반환합니다.

math.sin 대신 np.sin을 사용하는 이유는 방송입니다. 이는 목록의 모든 항목에 함수를 적용하는 numpy 용어입니다. 사실, map을 사용하면 numpy 없이도 동일한 결과를 얻을 수 있다는 생각이 듭니다.

map(lambda n: math.sin(n), x)
로그인 후 복사

하지만 numpy 방송은 사용이 간편하고 간편합니다.

이제 pyplot 설정이 완료되었습니다. 먼저 새로운 "그림"(그림)을 만듭니다. 이 그림에 서브플롯(ax)을 추가하세요. 많이 있을 수 있습니다. 111은 "1x1 그리드를 생성하고 이 서브플롯을 첫 번째 셀에 배치"라는 다소 난해한 해석을 가지고 있습니다.

이 서브플롯(또는 축 집합)에는 전달된 x 및 y 값을 사용하여 선이 그려집니다. (점은 직선으로 연결되어 연속적으로 그려집니다.) "r-"는 빨간색 실선을 지정하는 약식 방법입니다. 여러 줄을 지정할 수 있으므로 플롯()은 튜플을 반환합니다. 위의 코드는 튜플 압축 풀기를 사용하여 원하는 값 하나를 추출합니다.

시작은 좋지만 시간이 지남에 따라 x축을 확장해야 합니다. 또한 이 코드는 필요한 경우 y축의 경계를 업데이트하지 않습니다. 첫 번째 플롯에 대해 계산하는 경계에 고정되어 있습니다. 좀 더 검색하면 이 SO 답변으로 연결됩니다. 인용하자면:

축의 dataLim을 업데이트한 다음 이후에 dataLim을 기반으로 축의 viewLim을 업데이트해야 합니다. 적절한 메서드는 axis.relim() 및 ax.autoscale_view() 메서드입니다.

물론 좋습니다. 그들의 예를 바탕으로 x와 y 모두에서 성장하는 데모 그래프를 만들었습니다.

import matplotlib.pyplot as plt
import numpy as np
from threading import Thread
from time import sleep

x = list(map(lambda x: x / 10, range(-100, 100)))
x_next_max = 100
y = np.sin(x)

# You probably won't need this if you're embedding things in a tkinter plot...
plt.ion()

fig = plt.figure()
ax = fig.add_subplot(111)
line1 = ax.plot(x, y, 'r-')[0] # Returns a tuple of line objects

growth = 0

while True:
    x.append(x_next_max / 10)
    x_next_max += 1
    line1.set_xdata(x)
    line1.set_ydata(np.sin(x) + np.sin(np.divide(x, 100)) + np.divide(x, 100))
    ax.relim()
    ax.autoscale()
    fig.canvas.draw()
    fig.canvas.flush_events()

    sleep(0.1)
로그인 후 복사

이제 어딘가로 가고 있어요. 하지만 이는 차단 루프이므로 데이터를 가끔 업데이트해야 합니다. 스레드가 여러 개인 경우 변수를 업데이트할 때 스레드로부터 안전한지 걱정해야 합니다. 이 경우에는 변수가 5분마다 한 번만 업데이트된다는 것을 알고 있기 때문에(또는 폴링 기능이 자주 실행되는 경우) 게을러질 수 있습니다. 코드 줄 중간에 변수를 덮어쓸 위험이 없습니다.

import matplotlib.pyplot as plt
import numpy as np
from threading import Timer
from time import sleep

x = list(map(lambda x: x / 10, range(-100, 100)))
x_next_max = 100
y = np.sin(x)

# You probably won't need this if you're embedding things in a tkinter plot...
plt.ion()

fig = plt.figure()
ax = fig.add_subplot(111)
line1 = ax.plot(x, y, 'r-')[0] # Plot returns a tuple of line objects

growth = 0
new_x = None

dT = 1

def grow():
    global new_x, x_next_max
    while True:
        new_x = x + [x_next_max / 10]
        x_next_max += 1
        sleep(dT) # grow every dT seconds

t = Thread(target=grow)
t.start()

while True:

    if new_x:
        x = new_x
        new_x = None
        line1.set_xdata(x)
        line1.set_ydata(np.sin(x) + np.sin(np.divide(x, 100)) + np.divide(x, 100))
        ax.relim()
        ax.autoscale()
        fig.canvas.draw()

    fig.canvas.flush_events()

    sleep(0.1)
로그인 후 복사

그래프는 성장 스레드가 new_x에 값을 할당할 때만 업데이트됩니다. flash_events() 호출은 "if" 문 외부에 있으므로 자주 호출된다는 점에 유의하세요.

위 내용은 pyplot을 이용한 실시간 플로팅의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

See all articles