기술 주변기기 일체 포함 Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

Sep 03, 2024 pm 05:18 PM
산업 리 페이페이 ReKep

비전과 로봇 학습의 긴밀한 통합.

옷 개기, 차 따르기, 신발 싸기 등 로봇 손 두 개가 원활하게 작동하는 모습에 최근 화제가 되고 있는 1X 휴머노이드 로봇 NEO까지! 이제 로봇 시대로 접어들고 있다는 느낌이 듭니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

사실 이 부드러운 움직임은 첨단 로봇 기술 + 절묘한 프레임 디자인 + 멀티모달 대형 모델의 산물입니다.

우리는 유용한 로봇이 종종 환경과 복잡하고 절묘한 상호 작용을 필요로 하며, 환경은 공간적, 시간적 영역에서 제약으로 표현될 수 있다는 것을 알고 있습니다.

예를 들어 로봇이 차를 따르도록 하려면 로봇이 먼저 찻주전자 손잡이를 잡고 차를 흘리지 않고 똑바로 세운 다음, 찻주전자 입구가 물에 닿을 때까지 부드럽게 움직여야 합니다. 그런 다음 찻주전자를 비스듬히 기울입니다. 여기에서 제약 조건에는 중간 목표(예: 냄비 입구를 컵 입구 정렬)뿐만 아니라 전환 상태(예: 찻주전자를 똑바로 유지하는 것)도 포함되어 공간적, 시간적 및 기타 조합 요구 사항을 결정합니다. 환경에 따른 로봇의 행동.

그러나 현실 세계는 복잡하고 이러한 제약 조건을 어떻게 구성하는가는 매우 어려운 문제입니다.

최근 Li Feifei 팀은 이 연구 방향에서 획기적인 발전을 이루었고 ReKep/관계형 키포인트 제약 조건을 제안했습니다. 간단히 말해서, 이 방법은 작업을 일련의 관계 핵심 포인트로 나타냅니다. 또한 이 프레임워크는 GPT-4o와 같은 대규모 다중 모드 모델과도 잘 통합될 수 있습니다. 데모 비디오를 보면 이 방법이 꽤 잘 작동하는 것으로 보입니다. 팀은 관련 코드도 공개했습니다. 이 글은 황웬롱(Wenlong Huang)이 작성했습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.
  • 논문 제목: ReKep: Space-Temporal Reasoning of Relational Keypoint Constraints for Robotic Manipulation

  • 논문 주소: https://rekep-robot.github.io/rekep.pdf

  • 프로젝트 웹사이트: https://rekep-robot.github.io

  • 코드 주소: https://github.com/huangwl18/ReKep

Li Feifei는 이 작업이 비전과 로봇 학습의 더 깊은 통합을 보여준다고 말했습니다! 이 논문에서는 올해 초 Li Feifei가 설립한 공간 지능에 초점을 맞춘 AI 회사인 World Labs에 대해 언급하지 않았지만 ReKep은 분명히 공간 지능 분야에서 큰 잠재력을 가지고 있습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

방법

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

관계 핵심 제약(ReKep)

먼저 ReKep 인스턴스를 살펴보겠습니다. 여기서는 K개의 키 포인트 세트가 지정되었다고 가정합니다. 구체적으로, 각 키포인트 k_i ∈ ℝ^3은 데카르트 좌표가 있는 장면 표면의 3D 점입니다.

ReKep 인스턴스는 다음과 같은 함수입니다. ?: ℝ^{K×3}→ℝ; 이는 일련의 핵심 포인트(?로 표시됨)를 무제한 비용으로 매핑할 수 있습니다. ≤ 0이면 제약 조건이 충족됩니다. 구체적인 구현과 관련하여 팀은 비선형 및 비볼록일 수 있는 핵심 사항에 대한 NumPy 작업을 포함하는 상태 비저장 Python 함수로 ? 함수를 구현했습니다. 기본적으로 ReKep 인스턴스는 키포인트 간에 원하는 공간 관계를 인코딩합니다.

그러나 작업 작업에는 일반적으로 여러 공간 관계가 포함되며 각 단계마다 서로 다른 공간 관계가 필요한 여러 시간 관련 단계가 있을 수 있습니다. 이를 위해 팀의 접근 방식은 작업을 N 단계로 분해하고 ReKep을 사용하여 각 단계 i ∈ {1, ..., N}에 대해 두 가지 유형의 제약 조건을 지정하는 것입니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.
  • 하위 목표 제약 세트

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.
  • 경로 제약 세트

여기서 Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.는 i 단계가 끝날 때 달성해야 할 핵심 관계를 인코딩하고, Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.는 i 단계 내 각 상태에서 충족해야 할 핵심 관계를 인코딩합니다. 그림 2의 차 붓기 작업을 예로 들어 보겠습니다. 이 작업은 차 잡기, 정렬, 붓기의 세 단계로 구성됩니다.

1단계 하위 목표 제약 조건은 찻주전자 손잡이 방향으로 엔드 이펙터에 도달하는 것입니다. 2단계 하위 목표 제약 조건은 찻주전자 입구를 컵 입구 위에 유지하는 것입니다. 또한 2단계 경로 제약 조건은 차가 쏟아지는 것을 방지하기 위해 찻주전자를 똑바로 유지하는 것입니다. 마지막 3단계 하위 목표 제약 조건은 지정된 차 붓는 각도에 도달하는 것입니다.

ReKep을 사용하여 작업 작업을 제한된 최적화 문제로 정의합니다.

ReKep을 사용하여 로봇 작업 작업을 하위 목표 및 경로가 포함된 제한된 최적화 문제로 변환합니다. 엔드 이펙터 포즈는 여기서 ∈ SE(3)로 표시됩니다. 연산 작업을 수행하기 위해 여기서의 목표는 전체 이산시간 궤적?_{1:T}:

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

즉, 각 단계에 대해 i , 최적화 문제의 목표는 주어진 ReKep 제약 조건 및 보조 비용 세트가 주어지면 다음 하위 목표(및 관련 시간)로 엔드 이펙터 포즈와 이 하위 목표를 달성하는 포즈 시퀀스를 찾는 것입니다. 이 공식은 궤적 최적화에서 직접 사격으로 간주될 수 있습니다.

분해 및 알고리즘 인스턴스화

위 수식 1을 실시간으로 풀기 위해 팀에서는 전체 문제를 분해하고 다음 하위 문제에만 집중하는 방식을 선택했습니다. 목표와 달성 하위 목표의 해당 경로가 최적화됩니다. 알고리즘 1은 이 프로세스의 의사코드를 제공합니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

하위 목표 문제의 해법은 다음과 같습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

경로 문제의 해법은 다음과 같습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

백트래킹

실제 환경은 복잡하고 변화하기 쉽기 때문에 때로는 작업 중에 이전 단계의 하위 목표 제약 조건이 더 이상 유지되지 않을 수도 있습니다. 예를 들어, 찻잔을 부을 때)을 치울 때) 이번에는 다시 계획을 세워야 합니다. 팀의 접근 방식은 문제의 경로를 확인하는 것입니다. 문제가 발견되면 반복적으로 이전 단계로 돌아갑니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

핵심점의 순방향 모델

방정식 2, 3을 풀기 위해 팀에서는 최적화 과정에서 사용할 수 있는 순방향 모델 h를 사용했습니다. 프로세스 Δ?를 기반으로 추정합니다. 구체적으로는, 엔드 이펙터 자세 Δτ의 변화에 ​​대해 동일한 상대 강성 변환 τ'[파악] = T_{Δ?}・?[파악]을 적용하여 키 포인트 위치 변화를 계산하고, 다른 키를 가정한다. 요점은 여전히 ​​남아 있습니다.

핵심 제안 및 ReKep 생성

시스템이 실제 상황에서 다양한 작업을 자유롭게 수행할 수 있도록 대형 모델도 활용했습니다! 구체적으로 대규모 시각적 모델과 시각적 언어 모델을 사용하여 키포인트 제안 및 ReKep 생성을 위한 파이프라인 프로세스를 설계했습니다.

핵심 제안

RGB 이미지가 주어지면 DINOv2는 먼저 패치 수준 기능 F_patch를 추출하는 데 사용됩니다. 그런 다음 특징을 원래 이미지 크기인 F_interp로 업샘플링하기 위해 쌍선형 보간이 수행됩니다. 제안이 장면의 모든 관련 객체를 포괄하는지 확인하기 위해 SAM(Segment Anything)을 사용하여 장면의 모든 마스크 M = {m_1, m_2, ... , m_n}을 추출했습니다.

각 마스크 j에 대해 k-평균(k = 5)과 코사인 유사성 측정을 사용하여 마스크 특징 F_interp[m_j]를 클러스터링합니다. 클러스터의 중심은 후보 키포인트로 사용되며 보정된 RGB-D 카메라를 사용하여 세계 좌표 ℝ^3에 투영됩니다. 후보 키포인트로부터 8cm 이내에 있는 다른 후보는 필터링됩니다. 전반적으로 팀은 이 프로세스가 세밀하고 의미상 의미 있는 객체 영역을 다수 식별할 수 있다는 것을 발견했습니다.

ReKep 생성

후보 핵심 포인트를 얻은 후 원본 RGB 이미지에 겹쳐서 숫자로 표시합니다. 그런 다음 특정 작업의 언어 지침과 결합하여 GPT-4o를 쿼리하여 필요한 단계 수와 각 단계 i에 해당하는 하위 목표 제약 조건 및 경로 제약 조건을 생성합니다.

실험

팀은 실험을 통해 제약조건 설계를 검증하고 다음 세 가지 질문에 답하려고 노력했습니다.

1. 자동화된 빌드 및 구성 작업이 작동합니까?

2. 시스템이 새로운 객체와 조작 전략에 얼마나 잘 일반화됩니까?

3. 다양한 구성 요소가 시스템 오류에 어떤 영향을 미칠 수 있나요?

ReKep을 사용하여 두 개의 로봇 팔 작동

다단계(m), 현장/실제 시나리오(w), 양손(b) 및 반응(r) 동작. 이러한 작업에는 차 따르기(m, w, r), 책 정리(w), 재활용 캔 정리(w), 상자 테이핑(w, r), 빨래 접기(b), 신발 포장(b) 및 공동 접기(b, 아르 자형).

결과는 표 1에 나와 있으며, 성공률 데이터가 보고되어 있습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

전체적으로 새로 제안하는 시스템은 업무별 데이터나 환경 모델이 제공되지 않더라도 비정형 환경에서도 올바른 제약 조건을 구성하고 실행할 수 있다. 특히 ReKep은 각 작업의 핵심 퍼즐을 효과적으로 처리합니다.

실제 실행 과정을 애니메이션으로 보여드립니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

운영 전략의 일반화

팀은 세탁물 접기 작업을 기반으로 새로운 전략의 일반화 성능을 탐색했습니다. 간단히 말해서 시스템이 다양한 종류의 옷을 접을 수 있는지 확인하는 것입니다. 이를 위해서는 기하학과 상식적인 추론이 필요합니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

여기에서는 GPT-4o가 사용되며 프롬프트에는 상황별 예시 없이 일반적인 지침만 포함됩니다. "전략 성공"은 생성된 ReKep이 실행 가능함을 의미하고, "실행 성공"은 각 의류 유형에 대해 주어진 실행 가능한 전략의 시스템 성공률을 측정합니다.

결과가 흥미롭습니다. 시스템은 옷마다 다른 전략을 사용하고 옷을 개는 방법 중 일부는 인간이 일반적으로 사용하는 방법과 동일하다는 것을 알 수 있습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.
Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

시스템 오류 분석

프레임워크 설계가 모듈식이므로 쉽게 시스템 오류 분석에 편리합니다. 팀은 표 1의 실험에서 발생한 실패 사례를 수동으로 검사한 후 이를 기반으로 파이프라인 프로세스의 시간적 종속성을 고려하여 모듈이 오류를 일으킬 가능성을 계산했습니다. 결과는 그림 5에 나와 있습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.

여러 모듈 중에서 키 포인트 추적기가 가장 많은 오류를 생성하는 것을 볼 수 있습니다. 빈번하고 간헐적인 폐색으로 인해 시스템이 정확하게 추적하기 어렵기 때문입니다.

위 내용은 Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. 딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. Aug 09, 2024 pm 04:01 PM

하지만 공원에 있는 노인을 이길 수는 없을까요? 파리올림픽이 본격화되면서 탁구가 많은 주목을 받고 있다. 동시에 로봇은 탁구 경기에서도 새로운 돌파구를 마련했습니다. 방금 DeepMind는 탁구 경기에서 인간 아마추어 선수 수준에 도달할 수 있는 최초의 학습 로봇 에이전트를 제안했습니다. 논문 주소: https://arxiv.org/pdf/2408.03906 DeepMind 로봇은 탁구를 얼마나 잘 치나요? 아마도 인간 아마추어 선수들과 동등할 것입니다: 포핸드와 백핸드 모두: 상대는 다양한 플레이 스타일을 사용하고 로봇도 견딜 수 있습니다: 다양한 스핀으로 서브를 받습니다. 그러나 게임의 강도는 그만큼 강렬하지 않은 것 같습니다. 공원에 있는 노인. 로봇용, 탁구용

최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. 최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. Aug 21, 2024 pm 07:33 PM

8월 21일, 2024년 세계로봇대회가 베이징에서 성대하게 개최되었습니다. SenseTime의 홈 로봇 브랜드 "Yuanluobot SenseRobot"은 전체 제품군을 공개했으며, 최근에는 Yuanluobot AI 체스 두는 로봇인 체스 프로페셔널 에디션(이하 "Yuanluobot SenseRobot")을 출시하여 세계 최초의 A 체스 로봇이 되었습니다. 집. Yuanluobo의 세 번째 체스 게임 로봇 제품인 새로운 Guoxiang 로봇은 AI 및 엔지니어링 기계 분야에서 수많은 특별한 기술 업그레이드와 혁신을 거쳤으며 처음으로 3차원 체스 말을 집는 능력을 실현했습니다. 가정용 로봇의 기계 발톱을 통해 체스 게임, 모두 체스 게임, 기보 복습 등과 같은 인간-기계 기능을 수행합니다.

클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 Sep 02, 2024 pm 01:56 PM

개학이 코앞으로 다가왔습니다. 새 학기를 앞둔 학생들뿐만 아니라 대형 AI 모델도 스스로 관리해야 합니다. 얼마 전 레딧에는 클로드가 게으르다고 불평하는 네티즌들이 붐볐습니다. "레벨이 많이 떨어졌고, 자주 멈췄고, 심지어 출력도 매우 짧아졌습니다. 출시 첫 주에는 4페이지 전체 문서를 한 번에 번역할 수 있었지만 지금은 반 페이지도 출력하지 못합니다. !" https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ "클로드에게 완전히 실망했습니다"라는 제목의 게시물에

세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. 세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. Aug 22, 2024 pm 10:35 PM

베이징에서 열린 세계로봇컨퍼런스에서는 휴머노이드 로봇의 전시가 현장의 절대 화두가 됐다. 스타더스트 인텔리전트 부스에서는 AI 로봇 어시스턴트 S1이 덜시머, 무술, 서예 3대 퍼포먼스를 선보였다. 문학과 무술을 모두 갖춘 하나의 전시 공간은 수많은 전문 관객과 미디어를 끌어 모았습니다. 탄력 있는 현의 우아한 연주를 통해 S1은 정밀한 작동과 속도, 힘, 정밀성을 갖춘 절대적인 제어력을 보여줍니다. CCTV 뉴스는 '서예'의 모방 학습 및 지능형 제어에 대한 특별 보도를 진행했습니다. 회사 설립자 Lai Jie는 부드러운 움직임 뒤에 하드웨어 측면이 최고의 힘 제어와 가장 인간과 유사한 신체 지표(속도, 하중)를 추구한다고 설명했습니다. 등)이지만 AI측에서는 사람의 실제 움직임 데이터를 수집해 로봇이 강한 상황에 직면했을 때 더욱 강해지고 빠르게 진화하는 방법을 학습할 수 있다. 그리고 민첩하다

ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

참가자들은 이번 ACL 컨퍼런스에서 많은 것을 얻었습니다. ACL2024는 6일간 태국 방콕에서 개최됩니다. ACL은 전산언어학 및 자연어 처리 분야 최고의 국제학술대회로 국제전산언어학회(International Association for Computational Linguistics)가 주최하고 매년 개최된다. ACL은 NLP 분야에서 학술 영향력 1위를 항상 차지하고 있으며, CCF-A 추천 컨퍼런스이기도 합니다. 올해로 62회째를 맞이하는 ACL 컨퍼런스에는 NLP 분야의 최신 저서가 400편 이상 접수됐다. 어제 오후 컨퍼런스에서는 최우수 논문과 기타 상을 발표했습니다. 이번에 최우수논문상 7개(미출판 2개), 우수주제상 1개, 우수논문상 35개가 있다. 이 컨퍼런스에서는 또한 3개의 리소스 논문상(ResourceAward)과 사회적 영향상(Social Impact Award)을 수상했습니다.

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Sep 03, 2024 pm 05:18 PM

비전과 로봇 학습의 긴밀한 통합. 최근 화제를 모으고 있는 1X 휴머노이드 로봇 네오(NEO)와 두 개의 로봇 손이 원활하게 협력해 옷 개기, 차 따르기, 신발 싸기 등을 하는 모습을 보면 마치 로봇 시대로 접어들고 있다는 느낌을 받을 수 있다. 실제로 이러한 부드러운 움직임은 첨단 로봇 기술 + 정교한 프레임 디자인 + 다중 모드 대형 모델의 산물입니다. 우리는 유용한 로봇이 종종 환경과 복잡하고 절묘한 상호작용을 요구한다는 것을 알고 있으며, 환경은 공간적, 시간적 영역에서 제약으로 표현될 수 있습니다. 예를 들어, 로봇이 차를 따르도록 하려면 먼저 로봇이 찻주전자 손잡이를 잡고 차를 흘리지 않고 똑바로 세운 다음, 주전자 입구와 컵 입구가 일치할 때까지 부드럽게 움직여야 합니다. 을 누른 다음 주전자를 특정 각도로 기울입니다. 이것

홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 Aug 08, 2024 am 07:02 AM

오늘 오후 Hongmeng Zhixing은 공식적으로 새로운 브랜드와 신차를 환영했습니다. 8월 6일, Huawei는 Hongmeng Smart Xingxing S9 및 Huawei 전체 시나리오 신제품 출시 컨퍼런스를 개최하여 파노라마식 스마트 플래그십 세단 Xiangjie S9, 새로운 M7Pro 및 Huawei novaFlip, MatePad Pro 12.2인치, 새로운 MatePad Air, Huawei Bisheng을 선보였습니다. 레이저 프린터 X1 시리즈, FreeBuds6i, WATCHFIT3 및 스마트 스크린 S5Pro를 포함한 다양한 새로운 올-시나리오 스마트 제품, 스마트 여행, 스마트 오피스, 스마트 웨어에 이르기까지 화웨이는 풀 시나리오 스마트 생태계를 지속적으로 구축하여 소비자에게 스마트한 경험을 제공합니다. 만물인터넷. Hongmeng Zhixing: 스마트 자동차 산업의 업그레이드를 촉진하기 위한 심층적인 권한 부여 화웨이는 중국 자동차 산업 파트너와 손을 잡고

분산 인공지능 컨퍼런스 DAI 2024 Call for Papers: Agent Day, 강화학습의 아버지 Richard Sutton이 참석합니다! Yan Shuicheng, Sergey Levine 및 DeepMind 과학자들이 기조 연설을 할 예정입니다. 분산 인공지능 컨퍼런스 DAI 2024 Call for Papers: Agent Day, 강화학습의 아버지 Richard Sutton이 참석합니다! Yan Shuicheng, Sergey Levine 및 DeepMind 과학자들이 기조 연설을 할 예정입니다. Aug 22, 2024 pm 08:02 PM

컨퍼런스 소개 과학기술의 급속한 발전과 함께 인공지능은 사회 발전을 촉진하는 중요한 힘이 되었습니다. 이 시대에 우리는 분산인공지능(DAI)의 혁신과 적용을 목격하고 참여할 수 있어 행운입니다. 분산 인공지능(Distributed Artificial Intelligence)은 인공지능 분야의 중요한 한 분야로, 최근 몇 년간 점점 더 많은 주목을 받고 있습니다. 대규모 언어 모델(LLM) 기반 에이전트가 갑자기 등장했습니다. 대규모 모델의 강력한 언어 이해와 생성 기능을 결합하여 자연어 상호 작용, 지식 추론, 작업 계획 등에 큰 잠재력을 보여주었습니다. AIAgent는 빅 언어 모델을 이어받아 현재 AI계에서 화제가 되고 있습니다. 오

See all articles