디자인 패턴은 복잡한 문제에 대한 솔루션입니다. 디자인 패턴은 특정 디자인 문제를 해결하는 방식으로 클래스와 인터페이스를 만드는 것입니다. 일반적으로 시스템을 설계하는 동안 몇 가지 문제가 발생하며 이러한 문제에 대한 일련의 설계 패턴이 있습니다. 디자인 패턴은 일반적으로 클래스, 인터페이스 및 해당 클래스 간의 관계를 포함하는 템플릿입니다.
이러한 유형의 패턴은 주어진 상황에 맞게 객체 생성을 처리합니다.
생성 수준에서는 시스템의 특정 부분을 독립적으로 생성하거나 함께 구성하여 유연성과 호환성을 보장하는 방법을 결정할 수 있습니다.
이 카테고리에 속하는 디자인 패턴 목록은 다음과 같습니다.
싱글턴 디자인 패턴의 필수 요소:
싱글턴 디자인 패턴 예시
public class Singleton { // Private static instance of the class private static Singleton instance; private int count; // Private constructor to prevent instantiation private Singleton() { // initialization code } // Public static method to provide access to the instance public static synchronized Singleton getInstance() { if (instance == null) { instance = new Singleton(); } return instance; } // Example method public void getCount() { System.out.println("The value of count is: " + count); } public void increaseCount() { count++; } public void decreaseCount() { count--; } } public class Main { public static void main(String[] args) { // Get the single instance of Singleton Singleton singleton = Singleton.getInstance(); singleton.increaseCount(); singleton.getCount(); // Output: The value of count is: 1 // Get the same instance of Singleton Singleton anotherSingleton = Singleton.getInstance(); anotherSingleton.decreaseCount(); anotherSingleton.getCount(); // Output: The value of count is: 0 // Both singleton and anotherSingleton refer to the same instance } }
빌더 패턴의 주요 필수 사항:
빌더 패턴의 예:
이 예에서는 빌더 디자인 패턴을 사용하여 단계별로 재료를 추가하여 초콜릿 스프레드 빵을 만드는 방법을 보여줍니다.
// Product Class class Bread { private String bread; private String spread; private String chiaSeeds; private String pumpkinSeeds; public void setBread(String bread) { this.bread = bread; } public void setSpread(String spread) { this.spread = spread; } public void setChiaSeeds(String chiaSeeds) { this.chiaSeeds = chiaSeeds; } public void setPumpkinSeeds(String pumpkinSeeds) { this.pumpkinSeeds = pumpkinSeeds; } @Override public String toString() { return "Bread with " + spread + ", topped with " + chiaSeeds + " and " + pumpkinSeeds; } } // Builder Interface interface BreadBuilder { BreadBuilder addBread(); BreadBuilder addChocolateSpread(); BreadBuilder addChiaSeeds(); BreadBuilder addPumpkinSeeds(); Bread build(); } // Concrete Builder class ChocolateBreadBuilder implements BreadBuilder { private Bread bread = new Bread(); @Override public BreadBuilder addBread() { bread.setBread("Whole grain bread"); return this; } @Override public BreadBuilder addChocolateSpread() { bread.setSpread("Chocolate spread"); return this; } @Override public BreadBuilder addChiaSeeds() { bread.setChiaSeeds("Chia seeds"); return this; } @Override public BreadBuilder addPumpkinSeeds() { bread.setPumpkinSeeds("Pumpkin seeds"); return this; } @Override public Bread build() { return bread; } } // Client Code public class Main { public static void main(String[] args) { // Create a builder and build the chocolate spread bread BreadBuilder builder = new ChocolateBreadBuilder(); Bread myBread = builder.addBread() .addChocolateSpread() .addChiaSeeds() .addPumpkinSeeds() .build(); // Output the result System.out.println(myBread); } }
팩토리 패턴의 핵심 요소:
// Product Interface interface Juice { void serve(); } // Concrete Product 1 class OrangeJuice implements Juice { @Override public void serve() { System.out.println("Serving Orange Juice."); } } // Concrete Product 2 class MangoJuice implements Juice { @Override public void serve() { System.out.println("Serving Mango Juice."); } } // Creator Abstract Class abstract class JuiceFactory { // Factory method public abstract Juice createJuice(); } // Concrete Creator 1 class OrangeJuiceFactory extends JuiceFactory { @Override public Juice createJuice() { return new OrangeJuice(); } } // Concrete Creator 2 class MangoJuiceFactory extends JuiceFactory { @Override public Juice createJuice() { return new MangoJuice(); } } // Client Code public class Main { public static void main(String[] args) { // Create an Orange Juice using its factory JuiceFactory orangeJuiceFactory = new OrangeJuiceFactory(); Juice orangeJuice = orangeJuiceFactory.createJuice(); orangeJuice.serve(); // Output: Serving Orange Juice. // Create a Mango Juice using its factory JuiceFactory mangoJuiceFactory = new MangoJuiceFactory(); Juice mangoJuice = mangoJuiceFactory.createJuice(); mangoJuice.serve(); // Output: Serving Mango Juice. } }
이 디자인 패턴은 주로 클래스와 객체가 더 큰 구조를 형성하도록 구성되는 방식에 중점을 둡니다. 객체와 클래스 간의 구성과 관계에 중점을 두고 구조를 단순화하고 유연성을 강화하며 유지 관리성을 향상시킵니다.
어댑터 패턴의 핵심 요소:
// Target Interface (Menu) interface Menu { void orderDish(String dish); } // Adaptee (Chef) class Chef { public void prepareDish(String dishName) { System.out.println("Chef is preparing " + dishName + "."); } } // Adapter (Waiter) class Waiter implements Menu { private Chef chef; public Waiter(Chef chef) { this.chef = chef; } @Override public void orderDish(String dish) { chef.prepareDish(dish); } } // Client Code public class Restaurant { public static void main(String[] args) { Chef chef = new Chef(); Menu waiter = new Waiter(chef); // Customer places an order via the waiter waiter.orderDish("Spaghetti Carbonara"); // Output: Chef is preparing Spaghetti Carbonara. } }
Key essentials of the facade design pattern:
An example of facade design pattern:
The example illustrates the Facade Pattern which simplifies the process of washing, drying, and pressing clothes. It hides the complexity of interacting with multiple subsystems behind a single, unified interface.
// Subsystem Classes class WashingMachine { public void wash() { System.out.println("Washing clothes."); } } class Dryer { public void dry() { System.out.println("Drying clothes."); } } class Iron { public void press() { System.out.println("Pressing clothes."); } } // Facade Class class LaundryFacade { private WashingMachine washingMachine; private Dryer dryer; private Iron iron; public LaundryFacade(WashingMachine washingMachine, Dryer dryer, Iron iron) { this.washingMachine = washingMachine; this.dryer = dryer; this.iron = iron; } public void doLaundry() { System.out.println("Starting the laundry process..."); washingMachine.wash(); dryer.dry(); iron.press(); System.out.println("Laundry process complete."); } } // Client Code public class Main { public static void main(String[] args) { WashingMachine washingMachine = new WashingMachine(); Dryer dryer = new Dryer(); Iron iron = new Iron(); LaundryFacade laundryFacade = new LaundryFacade(washingMachine, dryer, iron); // Use the facade to do the laundry laundryFacade.doLaundry(); } }
The patterns that fall under this category mainly deals with communication between objects and how they interact with each other.
Example of iterator pattern:
This example demostrates a simple usecase of iterators a employees object using iterator pattern.
// Iterator Interface interface Iterator { boolean hasNext(); Object next(); } // Aggregate Interface interface Aggregate { Iterator createIterator(); } // Employee Class class Employee { public String Name; public int Age; public String Department; public int EmployeeId; public Employee(String name, int age, String department, int employeeId) { this.Name = name; this.Age = age; this.Department = department; this.EmployeeId = employeeId; } } // Concrete Aggregate class EmployeeCollection implements Aggregate { private Employee[] employees; public EmployeeCollection(Employee[] employees) { this.employees = employees; } @Override public Iterator createIterator() { return new EmployeeIterator(this.employees); } } // Concrete Iterator class EmployeeIterator implements Iterator { private Employee[] employees; private int position = 0; public EmployeeIterator(Employee[] employees) { this.employees = employees; } @Override public boolean hasNext() { return position < employees.length; } @Override public Object next() { return hasNext() ? employees[position++].Name : null; } } // Client Code public class Main { public static void main(String[] args) { // Creating employee array Employee[] employees = { new Employee("John", 28, "Engineering", 101), new Employee("Jane", 32, "Marketing", 102), new Employee("Tom", 25, "Sales", 103) }; // Creating employee collection and iterator EmployeeCollection employeeCollection = new EmployeeCollection(employees); Iterator iterator = employeeCollection.createIterator(); // Iterating through employees while (iterator.hasNext()) { System.out.println(iterator.next()); } } }
1.Strategy Interface: Defines the common interface for all supported algorithms.
2.Concrete Strategies: Implement the Strategy interface with specific algorithms.
3.Context: Uses a Strategy to execute the algorithm.
Example of strategy pattern:
Imagine we are building an encoding system where we may need to use different encoding algorithms depending on the situation. We will demonstrate this system using the Strategy Pattern.
// Strategy Interface interface EncoderStrategy { void encode(String string); } // Concrete Strategy for Base64 Encoding class Base64Encoder implements EncoderStrategy { @Override public void encode(String string) { // Implement Base64 encoding logic here System.out.println("This method uses Base64 encoding algorithm for: " + string); } } // Concrete Strategy for MD5 Encoding class MD5Encoder implements EncoderStrategy { @Override public void encode(String string) { // Implement MD5 encoding logic here System.out.println("This method uses MD5 encoding algorithm for: " + string); } } // Context Class class EncoderContext { private EncoderStrategy strategy; public void setEncoderMethod(EncoderStrategy strategy) { this.strategy = strategy; } public void encode(String string) { strategy.encode(string); } } // Usage public class Main { public static void main(String[] args) { EncoderContext context = new EncoderContext(); // Use Base64 encoding method context.setEncoderMethod(new Base64Encoder()); context.encode("A34937ifdsuhfweiur"); // Use MD5 encoding method context.setEncoderMethod(new MD5Encoder()); context.encode("89743297dfhksdhWOJO"); } }
Explanation:
Example of observer pattern:
In a stock trading application, the stock ticker acts as the subject. Whenever the price of a stock is updated, various observers—such as investors and regulatory bodies—are notified of the change. This allows them to respond to price fluctuations in real-time.
import java.util.ArrayList; import java.util.List; // Observer interface interface Observer { void update(String stockSymbol, double stockPrice); } // Subject interface interface Subject { void register(Observer o); void remove(Observer o); void notify(); } // Concrete Subject class Stock implements Subject { private List<Observer> observers; private String stockSymbol; private double stockPrice; public Stock() { observers = new ArrayList<>(); } public void setStock(String stockSymbol, double stockPrice) { this.stockSymbol = stockSymbol; this.stockPrice = stockPrice; notify(); } @Override public void register(Observer o) { observers.add(o); } @Override public void remove(Observer o) { observers.remove(o); } @Override public void notify() { for (Observer observer : observers) { observer.update(stockSymbol, stockPrice); } } } // Concrete Observer class StockTrader implements Observer { private String traderName; public StockTrader(String traderName) { this.traderName = traderName; } @Override public void update(String stockSymbol, double stockPrice) { System.out.println("Trader " + traderName + " notified. Stock: " + stockSymbol + " is now $" + stockPrice); } } // Usage public class Main { public static void main(String[] args) { Stock stock = new Stock(); StockTrader trader1 = new StockTrader("Niharika"); StockTrader trader2 = new StockTrader("Goulikar"); stock.register(trader1); stock.register(trader2); stock.setStock("Niha", 9500.00); stock.setStock("Rika", 2800.00); } }
Explanation:
위 내용은 디자인 패턴: 일반적인 디자인 패턴에 대한 심층 분석의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!