백엔드 개발 파이썬 튜토리얼 Python의 객체 감지에 대한 초보자 가이드

Python의 객체 감지에 대한 초보자 가이드

Sep 07, 2024 pm 02:01 PM

A Beginner’s Guide to Object Detection in Python

객체 감지는 컴퓨터 비전에서 가장 흥미로운 영역 중 하나이며, 이를 통해 기계는 이미지나 비디오에서 객체를 인식하고 찾을 수 있습니다. 이 가이드에서는 Python을 사용한 객체 감지 방법을 소개하여 널리 사용되는 라이브러리를 사용하여 기본 감지 파이프라인을 구현하는 데 도움을 줍니다. 초보자이거나 기존 기술을 기반으로 하려는 경우 이 튜토리얼은 시작하는 데 필수적인 통찰력을 제공합니다.


객체 감지란 무엇입니까? ?

객체 감지에는 두 가지 기본 작업이 포함됩니다.

  1. 이미지 분류: 이미지에 어떤 객체가 있는지 확인
  2. 객체 위치 파악: 경계 상자를 사용하여 객체의 위치를 ​​찾습니다.

이는 모델이 클래스 라벨만 예측하는 단순한 이미지 분류보다 더 복잡합니다. 객체 감지를 위해서는 이미지 내 객체의 클래스와 위치를 모두 예측해야 합니다.


널리 사용되는 객체 감지 알고리즘?

1. YOLO (You Only Look Once)

  • 속도로 유명한 YOLO는 경계 상자와 클래스 확률을 동시에 예측하는 실시간 객체 감지 시스템입니다.

2. SSD(단일 샷 멀티박스 감지기)

  • SSD는 단일 패스로 객체를 감지하고 기능 맵을 사용하여 다양한 규모의 객체를 감지하는 데 탁월합니다.

3. 더 빠른 R-CNN

  • 지역 제안을 먼저 생성한 후 분류하는 2단계 모델입니다. YOLO나 SSD보다 정확하지만 속도가 느립니다.

Python 환경 설정 ?️

Python에서 객체 감지를 시작하려면 몇 가지 라이브러리가 필요합니다.

1단계: Python 설치

python.org로 이동하여 최신 버전의 Python(3.8+)을 다운로드하세요.

2단계: 필수 라이브러리 설치

이미지 처리에는 OpenCV를 사용하고 객체 감지에는 TensorFlow를 사용하겠습니다.

pip install opencv-python tensorflow
로그인 후 복사

선택적으로 Matplotlib를 설치하여 탐지 결과를 시각화할 수 있습니다.

pip install matplotlib
로그인 후 복사

객체 감지를 위한 사전 훈련된 모델?

처음부터 훈련하는 대신 TensorFlow의 객체 감지 API 또는 PyTorch에서 사전 훈련된 모델을 사용하세요. 사전 학습된 모델은 COCO(Common Objects in Context)와 같은 데이터 세트를 활용하여 리소스를 절약합니다.

이 튜토리얼에서는 빠르고 정확한 사전 학습된 모델인 TensorFlow의 ssd_mobilenet_v2를 사용합니다.


TensorFlow 및 OpenCV를 사용한 객체 감지 ?‍?

간단한 객체 감지 파이프라인을 구현하는 방법은 다음과 같습니다.

1단계: 사전 학습된 모델 로드

import tensorflow as tf

# Load the pre-trained model
model = tf.saved_model.load("ssd_mobilenet_v2_fpnlite_320x320/saved_model")
로그인 후 복사

TensorFlow의 모델 동물원에서 모델을 다운로드할 수 있습니다.

2단계: 이미지 로드 및 처리

import cv2
import numpy as np

# Load an image using OpenCV
image_path = 'image.jpg'
image = cv2.imread(image_path)

# Convert the image to a tensor
input_tensor = tf.convert_to_tensor(image)
input_tensor = input_tensor[tf.newaxis, ...]
로그인 후 복사

3단계: 객체 감지 수행

# Run inference on the image
detections = model(input_tensor)

# Extract relevant information like bounding boxes, classes, and scores
num_detections = int(detections.pop('num_detections'))
detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()}
boxes = detections['detection_boxes']
scores = detections['detection_scores']
classes = detections['detection_classes'].astype(np.int64)
로그인 후 복사

4단계: 결과 시각화

# Draw bounding boxes on the image
for i in range(num_detections):
    if scores[i] > 0.5:  # Confidence threshold
        box = boxes[i]
        h, w, _ = image.shape
        y_min, x_min, y_max, x_max = box

        start_point = (int(x_min * w), int(y_min * h))
        end_point = (int(x_max * w), int(y_max * h))

        # Draw rectangle
        cv2.rectangle(image, start_point, end_point, (0, 255, 0), 2)

# Display the image
cv2.imshow("Detections", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
로그인 후 복사

이 코드는 이미지를 로드하고 객체를 감지한 후 경계 상자로 시각화합니다. 신뢰도 임계값은 50%로 설정되어 신뢰도가 낮은 탐지를 필터링합니다.


고급 주제?

객체 감지 기술을 한 단계 더 발전시킬 준비가 되셨나요?

  • 사용자 정의 객체 감지: TensorFlow 또는 PyTorch를 사용하여 자신의 데이터세트에서 사용자 정의 모델을 훈련합니다.
  • 실시간 감지: 보안이나 자율 주행과 같은 애플리케이션을 위해 라이브 비디오 스트림에 객체 감지를 적용합니다.
  • 엣지 디바이스 배포: 모바일 및 IoT 디바이스에 대한 객체 감지 모델을 최적화합니다.

결론 ?

Python의 객체 감지는 의료, 보안, 자율 주행과 같은 산업에서 가능성의 세계를 열어줍니다. TensorFlow 및 OpenCV와 같은 도구를 사용하면 YOLO 또는 SSD와 같은 사전 학습된 모델을 사용하여 감지 파이프라인을 빠르게 구현할 수 있습니다. 기본 사항에 익숙해지면 실시간 감지 및 맞춤 모델 학습과 같은 고급 주제를 탐색할 수 있습니다.

다음에는 객체 감지를 어디에 적용할 예정인가요? 아래 댓글로 토론해 보세요!


키워드: 객체 감지, Python, 컴퓨터 비전, OpenCV, TensorFlow, YOLO, SSD, Faster R-CNN

위 내용은 Python의 객체 감지에 대한 초보자 가이드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles