C의 분리된 공용체
C:
에서 이 Haskell 유형을 어떻게 표현하는지 즉시 명확하지 않습니다.
data Tree = Leaf Int | Inner Tree Tree
Haskell 및 Rust와 같은 언어와 달리 C에는 기본 지원이 부족합니다.
분리된 노동조합. 그러나 약간의 추가 입력을 하려는 경우 이를 표현하는 데 필요한 모든 재료를 제공합니다.
먼저 깨달아야 할 점은 분리된 결합이 다음으로 구성된다는 것입니다.
- 다양한 변형
- 각 항목에는 관련 데이터가 있습니다.
이진 트리 예에는 "leaf"와 "inner"라는 두 가지 변형이 있습니다. 리프 변형은 단일 정수(해당 데이터)를 저장하고 내부 변형은 두 개의 트리(왼쪽 및 오른쪽 하위 항목을 나타냄)를 저장합니다.
두 개의 필드가 있는 구조체를 사용하여 C에서 이러한 동물을 표현할 수 있습니다.
- 어떤 변형이 표시되는지 나타내는 "유형 태그"(일반적으로 정수)입니다.
- 변형과 관련된 데이터를 저장하는 데이터 필드
열거형을 사용하여 다양한 변형 유형 태그를 정의하는 것이 편리합니다.
enum tree_type { TREE_LEAF, TREE_INNER, };
데이터 저장은 어떻게 되나요? 이것이 바로 노조가 해결하기 위해 존재하는 문제입니다.
노동조합
Union은 다양한 유형의 데이터를 저장할 수 있는 메모리 덩어리일 뿐입니다. 예를 들어, 다음은 32비트 정수 또는 5자 배열을 저장할 수 있는 공용체입니다.
union int_or_chars { int num; char letters[5]; };
Union int_or_chars 유형의 변수는 특정 시간에 int 또는 5개의 문자 배열을 보유할 수 있습니다(동시에 둘 다를 보유할 수는 없음).
union int_or_chars quux; // We can store an int: quux.num = 42; printf("quux.num = %d\n", quux.num); // => quux.num = 42 // Or 5 chars: quux.letters[0] = 'a'; quux.letters[1] = 'b'; quux.letters[2] = 'c'; quux.letters[3] = 'd'; quux.letters[4] = 0; printf("quux.letters = %s\n", quux.letters); // => quux.letters = abcd // But not both. The memory is "shared", so the chars saved above are // now being interpreted as an int: printf("quux.num = %x\n", quux.num); // quux.num = 64636261 return 0;
int_or_chars 유니온과 같은 유니온은 가장 큰 멤버를 수용할 수 있을 만큼 큰 메모리 덩어리를 마음대로 사용할 수 있습니다. 작동 방식을 보여주는 도식은 다음과 같습니다.
+ ---- + ---- + ---- + ---- + ---- + | byte | | | | | + ---- + ---- + ---- + ---- + ---- + |<-- int uses these 4 -->| |<-- array of chars uses all 5 -->|
quux에 문자 배열을 저장한 후 quux.num을 인쇄하면 "가비지"가 발생하는 이유를 설명하는 데 도움이 됩니다. 이는 가비지가 아니라 정수로 해석되는 문자열 "abcd"였습니다. (내 컴퓨터에서 quux.num은 64636261로 16진수로 인쇄됩니다. 문자 'a'는 ASCII 값 0x61, 'b' 값은 0x62, 'c'는 0x63, 'd'는 0x64입니다. 내 프로세서가 리틀 엔디안이므로 순서가 반대입니다.)
Union에 대한 마지막 참고 사항으로, sizeof:
에서 보고한 크기에 놀랄 수도 있습니다.
printf("%ld\n", sizeof(union int_or_chars)); // => 8
내 컴퓨터에서 Union int_or_chars 유형의 크기는 예상한 5바이트가 아니라 8바이트입니다. 내 프로세서 아키텍처에 규정된 정렬 요구 사항으로 인해 일부 패딩이 추가되었습니다.
이진 트리로 돌아가기
이제 이진 트리 유형을 Haskell에서 C로 계속 변환할 준비가 되었습니다. 변형 유형을 나타내는 열거형을 이미 정의했습니다. 이제 데이터를 저장하기 위한 Union이 필요합니다.
union tree_data { int leaf; struct inner_data inner; };
여기서 struct inner_data는 "내부" 변형의 왼쪽 및 오른쪽 하위 항목을 포함하는 구조체입니다.
struct inner_data { struct tree *left; struct tree *right; };
"내부" 변형은 왼쪽 및 오른쪽 하위 항목에 대한 포인터를 유지합니다. 그렇지 않으면 구조체 트리의 크기가 고정되지 않기 때문에 간접 참조가 필요합니다.
이러한 조각을 준비하면 나무 유형을 정의할 준비가 되었습니다.
enum tree_type { TREE_LEAF, TREE_INNER, }; struct tree; struct inner_data { struct tree *left; struct tree *right; }; union tree_data { int leaf; struct inner_data inner; }; // A representation of a binary tree. struct tree { enum tree_type type; union tree_data data; };
나무와 놀기
트리를 구성하는 몇 가지 함수를 작성해 보겠습니다.
// Construct a leaf node. struct tree *leaf(int value) { struct tree *t = malloc(sizeof(*t)); t->type = TREE_LEAF; t->data.leaf = value; return t; } // Construct an inner node. struct tree *inner(struct tree *left, struct tree *right) { struct tree *t = malloc(sizeof(*t)); t->type = TREE_INNER; t->data.inner.left = left; t->data.inner.right = right; return t; }
인쇄하세요.
void print_tree(struct tree *t) { switch (t->type) { case TREE_LEAF: printf("%d", t->data.leaf); return; case TREE_INNER: printf("("); print_tree(t->data.inner.left); printf(" "); print_tree(t->data.inner.right); printf(")"); return; } }
이를 통해 Haskell 표현식을 번역할 수 있습니다.
Inner (Inner (Leaf 1) (Leaf 2)) (Leaf 3)
C로 다음과 같이
inner(inner(leaf(1), leaf(2)), leaf(3));
예:
struct tree *t = inner(inner(leaf(1), leaf(2)), leaf(3)); print_tree(t); // => ((1 2) 3)
좀 더 흥미로운 예로, 깊이 우선 검색 기능을 번역해 보겠습니다.
-- Check if a value is in a tree. search :: Int -> Tree -> Bool search v (Leaf w) = v == w search v (Inner l r) = search v l || search v r
트리 유형 사용:
// Check if a value is in a tree. int search(int value, struct tree *t) { switch (t->type) { case TREE_LEAF: return t->data.leaf == value; case TREE_INNER: return ( search(value, t->data.inner.left) || search(value, t->data.inner.right) ); } }
확실히 좀 더 장황하지만 번역 과정은 간단합니다(컴파일러가 이런 종류의 작업을 수행할 수 있을 정도라면...).
트레이드오프
대체 표현과 관련된 장단점에 대해 약간의 여담으로 마무리합니다. 구체적으로 다음과 같이 가정해 보세요.
union tree_data { int leaf; struct inner_data inner; };
다음을 사용했습니다:
union tree_data { int leaf; struct inner_data *inner; // ^ The difference. };
첫 번째 경우 공용체에는 inner_data 구조체가 포함되어 있지만 두 번째 경우에는 이 구조체에 대한 포인터를 저장합니다. 결과적으로 첫 번째 공용체는 16바이트로 약간 더 크며, 내 컴퓨터의 포인터 버전은 8바이트입니다. 불행하게도 영향을 받는 것은 내부 노드만이 아닙니다. 리프 노드는 이와 동일한 16바이트 공용체를 사용하지만 단일(4바이트) int만 저장합니다. 좀 낭비적인 느낌이네요.
그러나 이것이 전부는 아닙니다. 내부 노드의 왼쪽 및 오른쪽 하위 항목에 액세스할 때마다 추가 간접 비용을 지불하게 됩니다. 특히 가리키는 메모리가 캐시되지 않은 경우 읽기 비용이 반드시 저렴하지는 않습니다.
여기에 제시된 기본 접근 방식은 대부분의 경우 더 나은 출발점이 될 것이며 몇 바이트를 줄이려는 노력(흰색으로 인해 추가 읽기가 발생함)이 될 때까지 그만한 가치가 없을 것이라고 생각합니다.
위 내용은 C의 분리된 공용체의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C 언어 데이터 구조 : 트리 및 그래프의 데이터 표현은 노드로 구성된 계층 적 데이터 구조입니다. 각 노드에는 데이터 요소와 하위 노드에 대한 포인터가 포함되어 있습니다. 이진 트리는 특별한 유형의 트리입니다. 각 노드에는 최대 두 개의 자식 노드가 있습니다. 데이터는 structtreenode {intdata; structtreenode*왼쪽; structReenode*오른쪽;}을 나타냅니다. 작업은 트리 트래버스 트리 (사전 조정, 인 순서 및 나중에 순서) 검색 트리 삽입 노드 삭제 노드 그래프는 요소가 정점 인 데이터 구조 모음이며 이웃을 나타내는 오른쪽 또는 무의미한 데이터로 모서리를 통해 연결할 수 있습니다.

파일 작동 문제에 대한 진실 : 파일 개방이 실패 : 불충분 한 권한, 잘못된 경로 및 파일이 점유 된 파일. 데이터 쓰기 실패 : 버퍼가 가득 차고 파일을 쓸 수 없으며 디스크 공간이 불충분합니다. 기타 FAQ : 파일이 느리게 이동, 잘못된 텍스트 파일 인코딩 및 이진 파일 읽기 오류.

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

알고리즘은 문제를 해결하기위한 일련의 지침이며 실행 속도 및 메모리 사용량은 다양합니다. 프로그래밍에서 많은 알고리즘은 데이터 검색 및 정렬을 기반으로합니다. 이 기사에서는 여러 데이터 검색 및 정렬 알고리즘을 소개합니다. 선형 검색은 배열 [20,500,10,5,100,1,50]이 있으며 숫자 50을 찾아야한다고 가정합니다. 선형 검색 알고리즘은 대상 값이 발견되거나 전체 배열이 통과 될 때까지 배열의 각 요소를 하나씩 점검합니다. 알고리즘 플로우 차트는 다음과 같습니다. 선형 검색의 의사 코드는 다음과 같습니다. 각 요소를 확인하십시오. 대상 값이 발견되는 경우 : true return false clanue 구현 : #includeintmain (void) {i 포함

C 언어 멀티 스레딩 프로그래밍 안내서 : 스레드 생성 : pthread_create () 함수를 사용하여 스레드 ID, 속성 및 스레드 함수를 지정합니다. 스레드 동기화 : 뮤텍스, 세마포어 및 조건부 변수를 통한 데이터 경쟁 방지. 실제 사례 : 멀티 스레딩을 사용하여 Fibonacci 번호를 계산하고 여러 스레드에 작업을 할당하고 결과를 동기화하십시오. 문제 해결 : 프로그램 충돌, 스레드 정지 응답 및 성능 병목 현상과 같은 문제를 해결합니다.

C에서 카운트 다운을 출력하는 방법? 답변 : 루프 명령문을 사용하십시오. 단계 : 1. 변수 n을 정의하고 카운트 다운 번호를 출력에 저장합니다. 2. n이 1보다 작을 때까지 n을 지속적으로 인쇄하려면 while 루프를 사용하십시오. 3. 루프 본체에서 n의 값을 인쇄하십시오. 4. 루프가 끝나면 n을 1 씩 빼기 위해 다음 작은 상호 상호를 출력합니다.

C 언어 기능에는 정의, 호출 및 선언이 포함됩니다. 함수 정의 함수 이름, 매개 변수 및 반환 유형, 기능 본체 구현 함수를 지정합니다. 함수 호출 기능 실행 및 매개 변수를 제공합니다. 함수 선언은 기능 유형의 컴파일러에 알려줍니다. 값 패스는 매개 변수 패스에 사용되며, 반환 유형에주의를 기울이고, 일관된 코드 스타일을 유지하며, 기능의 오류를 처리합니다. 이 지식을 마스터하면 우아하고 강력한 C 코드를 작성하는 데 도움이 될 수 있습니다.

정수는 프로그래밍에서 가장 기본적인 데이터 유형이며 프로그래밍의 초석으로 간주 될 수 있습니다. 프로그래머의 임무는 이러한 숫자의 의미를 부여하는 것입니다. 소프트웨어가 아무리 복잡하더라도, 프로세서는 정수 만 이해하기 때문에 궁극적으로 정수 작업으로 이어집니다. 음수를 나타내기 위해, 우리는 2의 보완을 도입했다. 소수점 숫자를 나타내려면 과학적 표기법을 만들었으므로 부동 소수점 숫자가 있습니다. 그러나 최종 분석에서는 모든 것이 여전히 0과 1에서 분리 할 수 없습니다. C의 정수의 간단한 기록은 거의 기본 유형입니다. 컴파일러가 경고를 발행 할 수 있지만, 많은 경우에는 다음과 같은 코드를 작성할 수 있습니다. 메인 (void) {return0;} 기술적 관점에서 다음 코드와 동일합니다. intmain (void) {return0;}.
